Rebecchi MJ, Pentyala SN: Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000, 80 (4): 1291-1335.
CAS
PubMed
Google Scholar
Rhee SG: Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001, 70: 281-312. 10.1146/annurev.biochem.70.1.281.
Article
CAS
PubMed
Google Scholar
Santos-Alvarez J, Sanchez-Margalet V: Pancreastatin activates beta3 isoform of phospholipase C via G(alpha)11 protein stimulation in rat liver membranes. Mol Cell Endocrinol. 1998, 143 (1–2): 101-106. 10.1016/S0303-7207(98)00137-3.
Article
CAS
PubMed
Google Scholar
Johnson RM, Garrison JC: Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5- and inositol 1,3,4-trisphosphate in hepatocytes. Differential inhibition by pertussis toxin and phorbol 12-myristate 13-acetate. J Biol Chem. 1987, 262 (36): 17285-17293.
CAS
PubMed
Google Scholar
O'Brien EM, Gomes DA, Sehgal S, Nathanson MH: Hormonal regulation of nuclear permeability. J Biol Chem. 2007, 282 (6): 4210-4217. 10.1074/jbc.M606300200.
Article
PubMed Central
PubMed
Google Scholar
Ni A, Yin H, Agata J, Yang Z, Chao L, Chao J: Overexpression of kinin B1 receptors induces hypertensive response to des-Arg9-bradykinin and susceptibility to inflammation. J Biol Chem. 2003, 278 (1): 219-225. 10.1074/jbc.M209490200.
Article
CAS
PubMed
Google Scholar
Cocco L, Martelli AM, Barnabei O, Manzoli FA: Nuclear inositol lipid signaling. Adv Enzyme Regul. 2001, 41: 361-384. 10.1016/S0065-2571(00)00017-0.
Article
CAS
PubMed
Google Scholar
Martelli AM, Manzoli L, Faenza I, Bortul R, Billi A, Cocco L: Nuclear inositol lipid signaling and its potential involvement in malignant transformation. Biochim Biophys Acta. 2002, 1603 (1): 11-17.
CAS
PubMed
Google Scholar
Albi E, Rossi G, Maraldi NM, Magni MV, Cataldi S, Solimando L, Zini N: Involvement of nuclear phosphatidylinositol-dependent phospholipases C in cell cycle progression during rat liver regeneration. J Cell Physiol. 2003, 197 (2): 181-188. 10.1002/jcp.10292.
Article
CAS
PubMed
Google Scholar
Martelli AM, Tabellini G, Borgatti P, Bortul R, Capitani S, Neri LM: Nuclear lipids: new functions for old molecules?. J Cell Biochem. 2003, 88 (3): 455-461. 10.1002/jcb.10379.
Article
CAS
PubMed
Google Scholar
Cocco L, Martelli AM, Vitale M, Falconi M, Barnabei O, Stewart Gilmour R, Manzoli FA: Inositides in the nucleus: regulation of nuclear PI-PLCbeta1. Adv Enzyme Regul. 2002, 42: 181-193. 10.1016/S0065-2571(01)00030-9.
Article
CAS
PubMed
Google Scholar
Faenza I, Matteucci A, Bavelloni A, Marmiroli S, Martelli AM, Gilmour RS, Suh PG, Manzoli L, Cocco L: Nuclear PLCbeta(1) acts as a negative regulator of p45/NF-E2 expression levels in Friend erythroleukemia cells. Biochim Biophys Acta. 2002, 1589 (3): 305-310. 10.1016/S0167-4889(02)00192-1.
Article
CAS
PubMed
Google Scholar
Xu A, Suh PG, Marmy-Conus N, Pearson RB, Seok OY, Cocco L, Gilmour RS: Phosphorylation of nuclear phospholipase C beta1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol Cell Biol. 2001, 21 (9): 2981-2990. 10.1128/MCB.21.9.2981-2990.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faenza I, Matteucci A, Manzoli L, Billi AM, Aluigi M, Peruzzi D, Vitale M, Castorina S, Suh PG, Cocco L: A role for nuclear phospholipase Cbeta 1 in cell cycle control. J Biol Chem. 2000, 275 (39): 30520-30524. 10.1074/jbc.M004630200.
Article
CAS
PubMed
Google Scholar
Matteucci A, Faenza I, Gilmour RS, Manzoli L, Billi AM, Peruzzi D, Bavelloni A, Rhee SG, Cocco L: Nuclear but not cytoplasmic phospholipase C beta 1 inhibits differentiation of erythroleukemia cells. Cancer Res. 1998, 58 (22): 5057-5060.
CAS
PubMed
Google Scholar
Manzoli L, Billi AM, Rubbini S, Bavelloni A, Faenza I, Gilmour RS, Rhee SG, Cocco L: Essential role for nuclear phospholipase C beta1 in insulin-like growth factor I-induced mitogenesis. Cancer Res. 1997, 57 (11): 2137-2139.
CAS
PubMed
Google Scholar
Zini N, Ognibene A, Marmiroli S, Bavelloni A, Maltarello MC, Faenza I, Valmori A, Maraldi NM: The intranuclear amount of phospholipase C beta 1 decreases following cell differentiation in Friend cells, whereas gamma 1 isoform is not affected. Eur J Cell Biol. 1995, 68 (1): 25-34.
CAS
PubMed
Google Scholar
Divecha N, Rhee SG, Letcher AJ, Irvine RF: Phosphoinositide signalling enzymes in rat liver nuclei: phosphoinositidase C isoform beta 1 is specifically, but not predominantly, located in the nucleus. Biochem J. 1993, 289 (Pt 3): 617-620.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U: The mammalian circadian timing system: from gene expression to physiology. Chromosoma. 2004, 113 (3): 103-112. 10.1007/s00412-004-0296-2.
Article
PubMed
Google Scholar
Ikeda M, Sugiyama T, Suzuki K, Moriya T, Shibata S, Katsuki M, Allen CN, Yoshioka T: PLC beta 4-independent Ca2+ rise via muscarinic receptors in the mouse suprachiasmatic nucleus. Neuroreport. 2000, 11 (5): 907-912. 10.1097/00001756-200004070-00002.
Article
CAS
PubMed
Google Scholar
Jenkins TC, Andrews JB, Meyer-Bernstein EL: Daily oscillation of phospholipase C beta4 in the mouse suprachiasmatic nucleus. Brain Res. 2007, 1178: 83-91. 10.1016/j.brainres.2007.07.098.
Article
CAS
PubMed
Google Scholar
Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, Ryu SH, Suh PG, Shin HS: Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature. 1997, 389 (6648): 290-293. 10.1038/38508.
Article
CAS
PubMed
Google Scholar
Park D, Lee S, Jun K, Hong YM, Kim DY, Kim YI, Shin HS: Translation of clock rhythmicity into neural firing in suprachiasmatic nucleus requires mGluR-PLCbeta4 signaling. Nat Neurosci. 2003, 6 (4): 337-338. 10.1038/nn1033.
Article
CAS
PubMed
Google Scholar
von Gall C, Stehle JH, Weaver DR: Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002, 309 (1): 151-162. 10.1007/s00441-002-0581-4.
Article
CAS
PubMed
Google Scholar
Nishide SY, Honma S, Nakajima Y, Ikeda M, Baba K, Ohmiya Y, Honma K: New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues. Genes Cells. 2006, 11 (10): 1173-1182. 10.1111/j.1365-2443.2006.01015.x.
Article
CAS
PubMed
Google Scholar
Albrecht U: Molecular orchestration of the hepatic circadian symphony. Genome Biol. 2006, 7 (9): 234-10.1186/gb-2006-7-9-234.
Article
PubMed Central
PubMed
Google Scholar
Davidson AJ, Castanon-Cervantes O, Stephan FK: Daily oscillations in liver function: diurnal vs circadian rhythmicity. Liver Int. 2004, 24 (3): 179-186. 10.1111/j.1478-3231.2004.00917.x.
Article
PubMed
Google Scholar
Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, et al: Circadian orchestration of the hepatic proteome. Curr Biol. 2006, 16 (11): 1107-1115. 10.1016/j.cub.2006.04.026.
Article
CAS
PubMed
Google Scholar
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U: System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5 (2): e34-10.1371/journal.pbio.0050034.
Article
PubMed Central
PubMed
Google Scholar
Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP: Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002, 12 (7): 540-550. 10.1016/S0960-9822(02)00759-5.
Article
CAS
PubMed
Google Scholar
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, et al: Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005, 308 (5724): 1043-1045. 10.1126/science.1108750.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staels B: When the Clock stops ticking, metabolic syndrome explodes. Nat Med. 2006, 12 (1): 54-55. 10.1038/nm0106-54.
Article
CAS
PubMed
Google Scholar
Karlsson B, Knutsson A, Lindahl B: Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med. 2001, 58 (11): 747-752. 10.1136/oem.58.11.747.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wijnen H, Young MW: Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006, 40: 409-448. 10.1146/annurev.genet.40.110405.090603.
Article
CAS
PubMed
Google Scholar
Sookoian S, Castano G, Gemma C, Gianotti TF, Pirola CJ: Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease. World J Gastroenterol. 2007, 13 (31): 4242-4248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14 (23): 2950-2961. 10.1101/gad.183500.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, et al: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004, 101 (15): 5339-5346. 10.1073/pnas.0308709101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo H, Brewer JM, Lehman MN, Bittman EL: Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci. 2006, 26 (24): 6406-6412. 10.1523/JNEUROSCI.4676-05.2006.
Article
CAS
PubMed
Google Scholar
Fischer L, Haag-Diergarten S, Scharrer E, Lutz TA: Leukotriene and purinergic receptors are involved in the hyperpolarizing effect of glucagon in liver cells. Biochim Biophys Acta. 2005, 1669 (1): 26-33. 10.1016/j.bbamem.2005.01.010.
Article
CAS
PubMed
Google Scholar
Im DS, Nagano K, Katada T, Okajima F, Ui M: Differential change of Ins-P3-Ca2+ signaling during culture of rat hepatocytes. Cell Signal. 2005, 17 (1): 83-91. 10.1016/j.cellsig.2004.06.002.
Article
CAS
PubMed
Google Scholar
Miguel BG, Calcerrada MC, Martin L, Catalan RE, Martinez AM: Increase of phosphoinositide hydrolysis and diacylglycerol production by PAF in isolated rat liver nuclei. Prostaglandins Other Lipid Mediat. 2001, 65 (4): 159-166. 10.1016/S0090-6980(01)00124-1.
Article
CAS
PubMed
Google Scholar
Rutter J, Reick M, McKnight SL: Metabolism and the control of circadian rhythms. Annu Rev Biochem. 2002, 71: 307-331. 10.1146/annurev.biochem.71.090501.142857.
Article
CAS
PubMed
Google Scholar
Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ: Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol. 2007, 293 (4): R1528-1537.
Article
CAS
PubMed
Google Scholar
Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma K, Kato Y: Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythms. 2007, 22 (4): 299-311. 10.1177/0748730407302461.
Article
CAS
PubMed
Google Scholar
Kim CG, Park D, Rhee SG: The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J Biol Chem. 1996, 271 (35): 21187-21192. 10.1074/jbc.271.35.21187.
Article
CAS
PubMed
Google Scholar
Alcazar-Roman AR, Wente SR: Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma. 2008, 117 (1): 1-13. 10.1007/s00412-007-0126-4.
Article
CAS
PubMed
Google Scholar
Cocco L, Capitani S, Maraldi NM, Mazzotti G, Barnabei O, Rizzoli R, Gilmour RS, Wirtz KW, Rhee SG, Manzoli FA: Inositides in the nucleus: taking stock of PLC beta 1. Adv Enzyme Regul. 1998, 38: 351-363. 10.1016/S0065-2571(97)00014-9.
Article
CAS
PubMed
Google Scholar
Crljen V, Visnjic D, Banfic H: Presence of different phospholipase C isoforms in the nucleus and their activation during compensatory liver growth. FEBS Lett. 2004, 571 (1–3): 35-42. 10.1016/j.febslet.2004.06.051.
Article
CAS
PubMed
Google Scholar
Cocco L, Rubbini S, Manzoli L, Billi AM, Faenza I, Peruzzi D, Matteucci A, Artico M, Gilmour RS, Rhee SG: Inositides in the nucleus: presence and characterisation of the isozymes of phospholipase beta family in NIH 3T3 cells. Biochim Biophys Acta. 1999, 1438 (2): 295-299.
Article
CAS
PubMed
Google Scholar
Cayetanot F, Deprez J, Aujard F: Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes. Eur J Neurosci. 2007, 26 (7): 2025-2032. 10.1111/j.1460-9568.2007.05826.x.
Article
PubMed
Google Scholar
Yagita K, Yamaguchi S, Tamanini F, Horst van Der GT, Hoeijmakers JH, Yasui A, Loros JJ, Dunlap JC, Okamura H: Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 2000, 14 (11): 1353-1363.
PubMed Central
CAS
PubMed
Google Scholar
Zylka MJ, Shearman LP, Weaver DR, Reppert SM: Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998, 20 (6): 1103-1110. 10.1016/S0896-6273(00)80492-4.
Article
CAS
PubMed
Google Scholar
Reddy AB, Wong GK, O'Neill J, Maywood ES, Hastings MH: Circadian clocks: neural and peripheral pacemakers that impact upon the cell division cycle. Mutat Res. 2005, 574 (1–2): 76-91.
Article
CAS
PubMed
Google Scholar
Laposky AD, Bass J, Kohsaka A, Turek FW: Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 2008, 582 (1): 142-151. 10.1016/j.febslet.2007.06.079.
Article
CAS
PubMed
Google Scholar
Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM: Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J Neurosci. 1999, 19 (12): RC11-
CAS
PubMed
Google Scholar
Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F: The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008, 283 (8): 4535-4542. 10.1074/jbc.M705576200.
Article
CAS
PubMed
Google Scholar
Obrietan K, Impey S, Storm DR: Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci. 1998, 1 (8): 693-700. 10.1038/3695.
Article
CAS
PubMed
Google Scholar
Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S: Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Neuroscience. 2005, 134 (1): 335-343. 10.1016/j.neuroscience.2005.03.057.
Article
CAS
PubMed
Google Scholar
Fahrenkrug J, Hannibal J, Georg B: Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. J Neuroendocrinol. 2008, 20 (3): 323-329. 10.1111/j.1365-2826.2008.01651.x.
Article
CAS
PubMed
Google Scholar