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Abstract

The transcriptome is the mRNA transcript pool in a cell, organ or tissue with the liver
transcriptome being amongst the most complex of any organ. Functional genomics methodologies
are now being widely utilized to study transcriptomes including the hepatic transcriptome. This
review outlines commonly used methods of transcriptome analysis, especially gene array analysis,
focusing on publications utilizing these methods to understand human liver disease. Additionally,
we have outlined the relationship between transcript and protein expressions as well as
summarizing what is known about the variability of the transcriptome in non-diseased liver tissue.
The approaches covered include gene array analysis, serial analysis of gene expression, subtractive
hybridization and differential display. The discussion focuses on primate whole organ studies and
in-vitro cell culture systems utilized. It is now clear that there are a vast number research
opportunities for transcriptome analysis of human liver disease as we attempt to better understand
both non-diseased and disease hepatic mMRNA expression. We conclude that hepatic transcriptome
analysis has already made significant contributions to the understanding of human liver
pathobiology.

Background

The sequencing of the human and other genomes has her-
alded the age of functional genomics. Although an inval-
uable resource in understanding human biology and
disease, the frequent lack of sequence correlation with a
defined tissue or disease phenotype has led to the
genomic sequence databases being huge reservoirs of
knowledge that mostly aid but do not direct research. We
have the start of the map for human disease but only lim-
ited understanding of how it unfolds. Moreover, this
genomic "gene map" is invariant across an entire organ-
ism and it is the expression of messenger RNA (mRNA)

gene transcripts and resultant protein expression that
defines normal molecular homeostasis and pathobiology.
Functional genomics studies attempt to correlate gene
mRNA transcript expression with a characterised pheno-
type thereby inferring function.

The entire mRNA transcript pool within a cell or tissue has
been labelled the transcriptome [1-3]. Similarly, the pro-
teome refers to the entire protein pool. Understanding the
regulation and expression of transcriptomes or proteomes
in a disease specific context is pivotal to understanding
human disease. Further, although proteins are the media-
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tors of molecular pathobiology proteome expression is
ultimately controlled by the transcriptome. Approaches
aimed at understanding the relationship between mRNA
and protein expression are complementary and important
in understanding disease [1,2]. No single approach or
methodology to examine the transcriptome is "best" or
"correct" and one of the central goals of this review is to
highlight the benefits and deficiencies of many current
approaches being utilized to examine transciptomes
(Table 1). Additionally, understanding the relationship
between the transcriptome and proteome is essential in
interpreting functional genomic studies.

Organ specific research has lagged behind the understand-
ing of general biological processes. However, most human
disease is defined by unique changes to organ specific
transciptomes and proteomes. Further, the transcriptome
and proteome of individual cells is defined by the intrac-
ellular milieu within an organ [3]. Therefore, understand-
ing the genome expression in an organ specific context is
pivotal to understanding normal homeostasis and patho-
biology. The normal variation, age related changes and
sex differences in organ related gene expression are further
important aspects, as well as frequent confounding varia-
bles, in understanding and interpreting changes in organ
transcriptome expression. The situation in diseased tissue
is even less well understood, examples from non-liver tis-
sue has shown that transcriptomes can dramatically
increase in complexity with disease [4]. Reducing the
complexity of organ transcriptomes by studying individ-
ual cell types is a reductionist approach to understanding

Table I: Transcriptome analysis.
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gene expression [3]. However, many forms of adult liver
disease have no suitable in-vitro models of disease and the
study of the whole liver is presently the principle means of
understanding disease pathogenesis.

The study of intrahepatic gene expression has been greatly
enhanced by functional genomic methodologies. How-
ever, the examination of the normal hepatic transcrip-
tome has received limited attention. An overall
understanding of hepatic transcriptome expression is
being unravelled as a by-product of focused attempts at
understanding individual liver disease phenotypes. Ques-
tions about the complexity of the hepatic transcriptome,
including individual variability and extent of change in
liver disease are poorly understood. One of the focuses of
this review is to outline the known complexity of the
hepatic transcriptome in normal homeostasis and disease.
Disease specific examples will be used to highlight
progress made due to use of functional genomic method-
ologies as well as highlighting strengths and weaknesses
of the techniques used to study transcriptomes.

The liver transcriptome

There are estimated to be in excess of 32 000 protein
encoding genes in the human genome. Further, there are
an unknown number of functionally significant alter-
nately spliced transcripts arising from these genes that
may exceed 100 000. How many of these transcripts are
expressed in the liver is unknown. Resources for identify-
ing and comparing organ transcriptomes are rare. One
method of inferring complexity is to examine GenBank

Open systems

Advantages

Disadvantages

Comments

Representational differences
analysis (RDA)

Differential display (DD)

Serial analysis of gene expression
(SAGE)

* Sensitive method

* Sequence data obtained

« Alternately spliced transcripts can be
easily identified

* Sensitive method
* Sequence data obtained

* Transciptome profiling possible
* Transcript representation retained

« "Hit and miss" approach

* Not suitable for transcriptome profiling
* Sequencing intensive

* Transcript representation may change
and results need to be verified

* High false positive rate

* Not suitable for transcriptome profiling
* Transcript representation may change
and results need to be verified

* Limited sequence data obtained

* Sequencing intensive method

* Typically used for identification of novel
differentially expressed transcripts

* Most commonly used variant of this
method is Suppression Subtractive
Hybridization (SSH)

* Not currently a widely favoured
methodology

* SAGE suitability for transciptome
profiling is reliant on extensive

« Often fails to account for transcript sequencing
alternate splicing
Closed Systems Advantages Disadvantages Comments

Gene arrays

« Characterized target sequences on the
arrays

« Extremely small feature size

* Very high through put methodology

* Restricted gene pool that may sample
rather than profile the transcriptome

* Variability

« Signal amplification often needed for
biopsies

« Often fails to account for transcript
alternate splicing

* Data generated can be a bioinformatics
challenge

* Inconsistencies with analysis
approaches

* Preferred transciptome profiling
method

* Gene alternate splicing can be
addressed by using "tilling arrays"
* MIAME is designed to overcome
methodological inconsistencies
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human UniGene clusters of non-redundant gene sets [5].
These UniGene clusters are compiled from mRNA and
expressed sequence tags (EST) and as a group represent a
species' transcriptome [5]. Currently the human UniGene
assembly of clusters (Build 180) has over 5 million
sequences representing 52 888 non-redundant tran-
scripts. Parsing key word searches approximately 26% of
transcripts (representing 13 627 clusters) were identified
in liver tissue, this compares to brain (46%), lung (40%),
kidney (35%), colon (32%) and heart (23%); Parsing
string used ("liver" or "hepatic") and "human" for Uni-
Gene Build 180. Coulouarn et. al. used a similar approach
and identified 12 638 non-redundant clusters from liver
tissue (UniGene Build 129) [6]. Further, Serial Analysis of
Gene Expression (SAGE) libraries can also provide some
insight into the complexity of the liver transcriptome
[7,8]. Two SAGE libraries from normal human liver iden-
tified 15 496 and 18 081 unique transcripts from a total
number of 66 308 and 125 700 tags respectively [7,8]. In
a SAGE comparison of multiple organs 32 131 unique
tags were identified (from a total of 455 325 tags) of these
56% were expressed in the liver compared to brain (75%),
breast (81%) and colon (91%) [8]. Therefore it is clear
that the normal liver has a complex transcriptome
expressing many thousands of transcripts. Interestingly,
the SAGE comparison of gene transcripts from various tis-
sues has identified organ related chromosomal domains
such as 6p12.1 associated with hepatic xenobiotic metab-
olism [8].

Microarray analysis of normal human liver by Yano et. al.
highlights many of the problems in examining the non-
diseased liver transcriptome [9]. A total of 2 418 genes
were examined in 5 normal patients with only 50% of
these transcripts being detected in 4 out of five patients.
Further only 27% of genes had co-ordinate expression in
these normal patients. Therefore, in addition to the liver
having a complex transcriptome there appears to be sig-
nificant individual variability in transcript expression.
This is further highlighted by the observation of Enard et.
al. that duplicate liver samples from the same individual
differed by 12% (technical variation) but that intraspecies
variation was as pronounced as interspecies variation in
hepatic mRNA transcript expression comparing chimpan-
zees and humans [10].

The situation in liver disease is even more poorly under-
stood. Transcriptomes, especially those undergoing
malignant transformation can double or even triple in
complexity. The liver appears to be similar in this regard
to other transcriptomes. In a SAGE analysis of intrahepatic
hepatitis C virus (HCV) infection the number of unique
transcripts identified increased by 18% to over 55% of the
total of normal liver transcripts in HCV and HCV with
hepatocellular carcinoma (HCC) respectively [11]. Addi-
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tional SAGE expression data demonstrates that the com-
plexity of the liver transcriptome can increase by 2 to 3
fold in the transition from normal liver to cholangiocarci-
noma. Therefore, are comparisons of transcriptomes, even
from the same organ, which differ so dramatically in com-
plexity valid? These problems are highlighted in a number
of functional genomic studies. The "Liverpool" nylon
array examination of inflammation associated liver dis-
ease (patients with hepatic abscesses, metastases and
cholangitis) from a total of 9 858 genes identified 154
genes associated with an inflammatory acute phase (AP)
response [6]. However, this study used a liver gene set
derived from a human UniGene assembly that predomi-
nantly includes those transcripts that are only expressed in
non-diseased liver or hepatic neoplasia. Therefore, this
gene array may not detect transcripts involved in intrahe-
patic inflammation if they were not previously identified
in liver tissue. Further, 59% of the genes that appeared to
associate with an acute phase response were eliminated
from the analysis as they did not encode for a known
inflammation associated function [6]. The possibility that
these genes encode for previously unrecognised inflam-
mation associated transcripts was not investigated. Addi-
tionally, genes known to be associated with an AP
response were not present in all individuals with liver
inflammation. Moreover this study identified only 880
genes (8.9%) that had liver restricted expression [6]. This
study highlights disease and technical discrepancies that
need to be considered in functional genomic studies.

Relationship between mRNA and protein expression

Proteins rather than mRNA are the major effectors of cel-
lular and tissue function. The study of mRNA expression
assumes that changes in mRNA expression reflect changes
in protein expression. There are many examples, such as
post-translational modifications, where protein expres-
sion or function is not controlled by mRNA expression
[12,13]. In the intact non-diseased liver tissue, approxi-
mately 25% of the changes in the mRNA transcript expres-
sion are not accompanied by changes in the expression of
the corresponding protein. Studies comparing mRNA and
protein expression in liver are few. Anderson et. al.
showed a poor correlation of the liver tissue abundance of
19 proteins and corresponding mRNA transcripts (corre-
lation coefficient of only 0.48). Further, they isolated 50
abundant mRNA transcripts of which 29 encoded secreted
proteins [14]. However, of the 50 most abundant proteins
they isolated none were secreted [14]. There is a bias in
mRNA pools, when compared to protein expression,
towards an over-representation of both secreted protein
transcripts and high abundance mRNA transcripts, such as
glyceraldehyde-3-phosphate dehydrogenase, has been
repeatedly demonstrated [14-17]. Human proteome and
transcriptome comparisons are rare and complicated by
our heterogenous multi-organ structure. In prototype
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organisms (yeast Saccharomyces cerevisiae) comparison of
the proteome and transcriptome showed a correlation of
0.94 for all proteins and genes but a correlation of only
0.36 for lowly expressed proteins and genes [18]. The
same study went on to show that mRNA expression varied
up-to 20 fold with constant protein expression and that
the protein expression could differ by greater than 30 fold
when mRNA expression remained constant [18]. How-
ever, another study in Saccharomyces cerevisiae, showed a
good correlation (r = 0.76) between lowly expressed pro-
teins and mRNA expression with an estimated mRNA
abundance as low as 10 transcripts per cell [19]. These two
studies do shed light on some of the pitfalls inherent in
human transcriptome analysis. Specifically, the impor-
tance of estimating the frequency of mRNA transcript and
protein expression within homogenous (i.e. cell lines)
compared to heterogenous (i.e. organs) cell populations.

A prototype human cell such as a lymphoblast has a mass
of 670 pg, contains 67 pg of protein (a total of 10°
polypeptide molecules representing 4,000 different pro-
teins) and 0.024 pg of mRNA (4 x 104 transcripts repre-
senting 5,000 different mRNA) [20]. Rare mRNA
transcripts present at a frequency of one copy per cell may
well be missed based on the cell population frequency
and size of the mRNA pool being analysed [20]. This is an
important consideration for hepatologists utilizing
biopsy specimens where the non-parenchymal cell sub-
population abundance is low and subject to sampling
error [21-23]. Additionally, it is apparent that if mRNA
amplification is utilized in functional genomic experi-
ments then every effort needs to be made to ensure gene,
especially low abundance gene, representation is retained.
Further, in functional genomic methods that "sample" the
transcriptome, such as serial analysis of gene expression
(SAGE), differential display and subtractive hybridisation
many low abundance transcripts will be missed without
sampling of a very large numbers of clones identified.
Therefore, most of these "sampling" methods are used as
a means of identifying differential expressed mRNA rather
than profiling a transcriptome. Detection of protein
expression differs as the analytically threshold is the lim-
iting factor. Currently proteomic detection requires pico-
mole amounts of protein (1012 - 1013 peptides) [20]. In a
homogenous cell population 90% of the cellular protein
mass is due to the 100 most abundant proteins and a fur-
ther 1200 proteins account for another 7% of the protein
mass that is detectable on typical proteomic analysis
(from a lysate of 100 cells) [20]. However, the remaining
3% of the protein mass includes 2800 proteins (over 50%
of the different protein species) that fall below the thresh-
old of detection for typical proteomic analysis [20]. There-
fore, differential protein expression or proteomics can
document changes in protein expression but is currently
restricted to moderate to high abundance proteins as well
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as being technically demanding. Ultimately, the protein
expression in every cell is controlled by the transcriptome
although the relationship between individual gene tran-
scripts and the corresponding protein expression may not
at first, be clear.

Functional genomics

It has been widely asserted that; "We know the sequence
so now we need to understand the function". This has led
to a plethora of new high through-put functional genom-
ics methodologies directed at correlating gene expression
with defined tissue or disease phenotypes. Most com-
monly mRNA transcript expression is compared in vari-
ous states using techniques such as microarray analysis,
differentially display (DD), subtractive hybridisation
(SH) and SAGE. However, functional genomics
approaches are not confined to examining transcriptomes
as there are a range of methodologies that can examine
proteomes. Further, the individual variability in gene
expression and function due to sequence differences
(nucleotide polymorphisms) is now being widely corre-
lated with disease phenotypes. The distinguishing feature
of all of these functional genomic methodologies is their
high through-put nature and generation of large data sets.
These techniques are confounded by problems with
reproducibility and difficulties in interpretation. Indeed
the correct method of analysis of these massive data sets is
another new area of intense research efforts.

Functional genomic methodologies can be divided into
two broad groups; (A) methods that require pre-existing
knowledge of the gene sequence "closed architecture sys-
tems" or (B) methods that require no a priori knowledge
of gene sequence "open architecture systems" (Table 1).
Open architecture systems excel at finding novel sequence
differences such as unrecognized splice variations but suf-
fer from requiring sequencing intensive methodologies
and frequently yielding results that are descriptive rather
than truly quantitative. This has led to the extensive use of
supplemental methodology to confirm and validate gene
expression identified by open architecture systems. Fur-
ther in the absence of immense sequencing efforts open
architecture systems tend to "sample" the transcriptome
rather than profiling the entire transcriptome. In contrast
closed architecture systems enable a consistent compari-
son of gene pools in various disease states but suffer from
an inability to detect novel sequence differences. How-
ever, with the sequencing of the human genome the
number of potentially novel genes that open architecture
system can study compared to closed architecture system
has decreased.

Gene array analysis
Array analysis has become the preferred means of rapidly
determining differential gene expression in hundreds to
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thousands of mRNA transcripts in a single experiment
[3,24-27]. From its inception in the 1990's the prolifera-
tion of this methodology has seen a number of different
techniques arise [3,24-27]. However, the underlying prin-
ciple of all array experiments remains the same with the
application of DNA representing individual genes onto a
substrate that is investigated with a sample labelled to
enable detection following hybridisation. The principal
differences in array methodologies relate to the samples
applied to the array, the substrate the samples are fixed to
and the method of preparing the probe that is subse-
quently hybridised to the array. The substrate the DNA is
fixed to divides the array techniques into those based on
membranes (typically nylon but now also plastic), glass
arrays and chip arrays. This approximates the density with
which the DNA is represented on the array, with the mem-
brane based arrays having the lowest density of gene tar-
gets through to the gene chip arrays where there is an
extremely high density of DNA targets on each chip.

Starting material for array analysis is often limited requir-
ing the use of amplification technologies [3,34]. Three
technologies are readily available to amplify mRNA from
even a single cell. Eberwine amplification is a linear
amplification method that uses a T7 RNA polymerase to
produce amplified RNA (aRNA) [35,36]. The poly(A) PCR
method is a PCR based method that is biased towards
small, 100 to 500 bp PCR products [37]. The final method
is SMART cDNA amplification (Clontech, CA, USA)
which is also a PCR based method that preferentially
amplifies full length cDNA [38-43]. All three amplifica-
tion methods have been successfully used to amplify liver
tissue for gene array analysis. Importantly, all three meth-
ods have been shown to retain the representation of tran-
scripts from the starting RNA pool.

Data analysis of array results is a significant bio-informat-
ics challenge. Ascertaining the significance of individual
gene differential expression should be determined for
each set of experimental conditions. Gene expression
from array experiments is typically presented as ratios of
differential expression in compared disease states [44].
The level of significant differential expression used by
most investigators is a 2.0 fold increase or decrease but
differences as low as 1.4 fold have been demonstrated to
be significant [45]. Threshold ratios of differential gene
expression are designed to distinguish "array noise" from
"biological noise" [44]. The variation of an individual
gene on a single array is estimated to be between 8 to 18%
with the array-to-array difference of 15% [44]. However,
the animal-to-animal coefficient of variation is estimated
at 18 to 60% [44]. Additional phenotype differences that
can have profound effects on hepatic transcriptome
expression include circadian changes [46-48], age [49]
and diet [50-52]. Sophisticated means of analysis now
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enable the researcher to perform covariate analysis (a cov-
ariate is a variable that contains contextual information
for a sample or gene) [44,53]. For instance, in a study of
colorectal carcinoma cell lines the expression of dihydro-
pyrimidine dehydrogenase (DPYD) negatively correlated
with sensitivity to 5-fluoruracil (FU) [54]. This is a covari-
ate correlation that makes physiological sense, as DPYD is
the rate-limiting enzyme degrading 5-FU [54].

Linking the array expression data with pathogenic process
is performed with or without a priori knowledge of gene
function (also known as supervised and unsupervised
methods respectively) [3,55-60]. Grouping or clustering
of genes to reduce the complexity of the data set is the
principle method of array analysis used [3,60,61]. In
supervised methods, genes included on an array are
grouped with pathogenic processes and pathways accord-
ing to known gene function [3,60]. An alternative super-
vised approach clusters known diseases states together
and then ascertains in which disease group an uncharac-
terised sample belongs based on the analysis of gene
expression. Unsupervised analysis is a powerful approach
that makes no assumptions about the function of a gene
and clusters genes based on their similarity in pattern of
expression [57,60]. Hierarchical pair-wise clustering is the
most common means now employed of grouping genes
without a priori knowledge of function [57,60-62]. Alter-
native approaches include self-organising maps, Bayesian
clustering, k-means clustering and neural networks
[57,60,63]. Essentially, all of these approaches aim to
"extract order from chaos" by "grouping and feature
reduction" [63]. Importantly, these analyses are reliant on
the use of multiple disease comparisons. Once a group of
genes has been identified (typically as a list of accession
numbers) a number of resources are available to rapidly
identify important pathogenic pathways. These resources
include both commercial computing packages and Inter-
net based services [3].

Gene array analysis publications

Array analysis has become a commonly published meth-
odology. Microarray analysis leads the way with more
published experiments than other forms of array experi-
ments. Array experiments offer "..a whole new way of
looking at cellular connections" [44]. Array analysis has
targeted identification of "candidate" genes in pathobiol-
ogy, identification of gene networks, characterisation of
gene ontologies and phylogeny as well as the classifica-
tion of pathobiology [44]. The diagnostic potential of
array analysis is further suggested by two early pivotal
studies conducted in human leukemia and lymphoma
patients. Golub and colleagues were able to distinguish
acute myeloid leukemia from acute lymphoid leukemia
(ALL) based on the gene expression pattern on microar-
rays [64]. Further, they were able to identify important
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"class predictor" sets of genes and were further able to
divide ALL samples into those of B- or T-cell origin [64].
The microarray analysis of Alizadeh et. al. showed that dif-
fuse large B-cell lymphoma could be divided into two
broad groups based on the pattern of gene expression con-
sistent with either a germinal centre origin or a peripheral
B-cell origin [65]. Further, patients with the peripheral B-
cell origin gene profile had a significantly greater long-
term survival [65]. Following these initial studies there are
now a number of manuscripts that correlate clinical out-
come in malignancy with tumor mRNA transcript expres-
sion. In a number of studies microarray profiling of
transcript expression was the best predictor of clinical out-
come. Therefore, gene expression profiles are now moving
from the research laboratory into clinical practice as a
diagnostic and prognostic tool in malignancy. However
there are very few studies correlating clinical outcome
with gene expression in non-malignant disease. This is
consistent with diseases in which there is a marked differ-
ence in gene expression (i.e. in malignancy) being the eas-
iest to discriminate by gene array analysis. This
underscores the need to understand normal variability
and to address the issue of reproducibility if gene array
analysis is to be used for predicting outcome in non-
malignant disease.

http://www.comparative-hepatology.com/content/5/1/6

Gene array analysis in human liver disease

Array analysis in human liver disease has now profiled the
intrahepatic gene expression in non-diseased liver, a
number of diseases and animal models of disease. Pres-
ently there are in excess of 200 published gene array stud-
ies of human liver disease or studies that utilize human
liver tissue (Table 2). This represents roughly 40% of the
greater than 500 published papers utilizing gene arrays to
study liver pathobiology. Most of these studies attempt to
understand pathobiology by examining mRNA transcript
expression. There are few publications in human liver dis-
ease where gene expression is correlated with clinical out-
come.

Gene array analysis in human liver disease — Viral hepatitis
Gene array analysis has provided novel insights into the
pathogenesis of hepatitis B (HBV) and hepatitis C (HCV)
liver injury. Importantly, both of these diseases have been
extensively studied using primate models of infection or
in human disease. Further, examination of HCV liver
injury is restricted to studies in humans and chimpanzees
as there are no in-vivo animal models of infection. The
insights into viral hepatitis pathogenesis offered by gene
array analysis has shown a number of common aspects
such as the interferon (IFN) associated gene response as
well as distinct differences that are helping us to under-
stand the unique intrahepatic transcript "signature" of

Table 2: Summary of study findings following transcriptome analyses of human liver disease.

Pathology Principal Findings Reference

Normal liver Marked variation in normal liver transcript expression [6,7,9]
Innate immune gene induction with the acute phase response [6]

Hepatitis C (HCV) Innate immune activation with acute HCV infection [68, 71]

Immune induction with chronic HCV infection

[67, 68, 69, 71, 75, 78]

NS3/4A induction of innate immune responses [73]

NS5A induced NF-kappaf activation [170]

Upregulation of specific IFN response genes predicts treatment response [74]

Gene expression associated with HCV HCC [I1,79, 151, 171]

Immune activation with HCV recurrence post transplantation [86, 87]

Immune response to chronic HBV infection [69, 75]
Autoimmune hepatitis (AIH) Intrahepatic transcript expression in AlH cirrhosis [76, 82]

Alcohol associated liver disease (ALD)
Non-alcoholic fatty liver disease (NAFLD)

Intrahepatic transcript expression in alcohol liver injury [89]
Gene expression in hepatic steatosis

[92-94], [93]**

Intrahepatic transcript expression in non-alcoholic steatohepatitis (NASH) [92]
Biliary liver disease Intrahepatic transcript expression in primary biliary cirrhosis [81, 82]
Intrahepatic transcript expression in primary sclerosing cholangitis-related [81]
cirrhosis
Transcript expression distinguishing embryonic and perinatal forms of biliary ~ [95]
atresia
Hepatocellular Carcinoma (HCC) Novel gene expression (possible tumour markers) in HCC [80, 83]
Transcript expression in viral hepatitis associated HCC [172-175]
Transcript expression in metastatic HCC development [176, 177]
Transcript expression in associated with prognosis and/or recurrence of [178, 179]
HCC
Cholangiocarcinoma Transcript expression of intrahepatic cholangiocarcinoma [180]
*Combination of transcriptome and proteome analysis.
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each viral infection. Additionally, studies of temporal
changes in transcript expression are central to understand-
ing clearance of virus, carrier states and injury in chronic
persistent infection.

Acute HBV and HCV infection has been analysed in the
chimpanzee [66-68]. Acute HBV infection is characterised
by an absence of intrahepatic differential gene expression
during HBV infection and the initial phase of virus repli-
cation. This is followed by the differential gene expression
associated with T-cell receptor and antigen presentation.
Subsequently gene expression associated with T cell
recruitment (chemokines), T cell effector function
(granzymes) and monocyte activation was observed. A
later phase of clearance was associated with the expression
of B cell related genes. This is in direct contrast to HCV
infection and suggests that HBV infection fails to induce a
significant innate immune response by acting in the ini-
tial phase of infection as a "stealth virus" [66,69]. Pres-
ently there are no published studies of acute or chronic
HBV infection in humans. Our own studies of cirrhotic
HBV explants demonstrated less differential gene expres-
sion than studies comparing normal liver and HCV asso-
ciated cirrhosis. Chronic HBV infection is characterised by
intrahepatic upregulation of stress response, cell cycle and
immune response associated genes. This is similar to find-
ings reported by others (personal communications).

Chimpanzee models of HCV have helped delineate the
development of the intrahepatic immune response in
acute and chronic HCV infection. Studies of chimpanzees
during acute HCV infection which showed a dramatic int-
rahepatic response with an increase in IFN response genes
as early as two weeks post infection [67,68]. The chimpan-
zee studies demonstrated an initial response with elevated
IFN-alpha/beta associated with a biphasic intrahepatic
immune response to HCV resulting in viral clearance
[67,68,70]. The IEN induced genes such as ISG15 and
ISG16-jun were initially strongly upregulated followed by
over 50 fold induction of Th1 associated transcripts such
as MIG (CXCL9) and IP10 (CXCL10). Subsequent
increased CXCL-10 (IFN-induced protein 10 (IP-10)) and
midkine (MK) peaking at 6 weeks is consistent with an
adaptive, Thl associated, immune response clearing
infected hepatocytes of the virus [68].

Comparison of chimpanzees that cleared acute HCV
infection compared to an animal that had virus persist-
ence has provided further insight into the balance
between viral clearance and peristance [71]. In these
experiments, Su et al. [71] observed upregulation of genes
associated with the early response (which correlated with
viral load) including many IFN alpha induced genes;
STAT 1, 2'-5' oligoadenylate synthetase, Mx1, ISP15 and
p27. Interestingly, there was the induction of lipid path-
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way genes such as fatty acid synthetase, sterol response
element binding protein (SREBP), down regulation of
PPARa as well as hepatic lipase C and flotillin 2. The lipid
pathway genes are associated with viral replication and
studies using in vitro replicon experiments has demon-
strated altered viral replication [72]. Further, the reduc-
tion in PPARa would be expected to be associated with
insulin resistance, a feature of chronic HCV, but prior to
this it was not an expected aspect of acute HCV infection.
As noted previously [68] clearance of HCV was associated
with the late induction of Th1 transcripts such as CXCL9
and CXCL10, MHC expression and T cell molecules such
as CD8 and granzyme A. The induction of IFN alpha
induced genes early in infection was also observed by Big-
ger et al but the timing did not correlate with clearance as
high levels of these transcripts continued in the animal
with viral persistence. This has also been seen in human
studies. Further, functional studies in HCV replicon sys-
tems has shown that the NS3/4a was able to inhibit inter-
feron alpha antiviral effector function by blocking the
phosphorylation of IRF-3 a key protein in the antiviral
response [73]. Therefore, chronic HCV infection induces a
persistent intrahepatic IFN alpha antiviral response but
the virus itself escapes this response via inhibition of the
effector arm. However, microarray studies of the intrahe-
patic IFN alpha induced gene response show that this is
variable and observed to be higher in patients not
responding to pegylated IFN and ribavirin therapy con-
sistent with resistance of the effector arm of the immune
response to amplification by exogenous therapy [74]. In
contrast, patients who had a sustained viral response
(SVR) to pegylated IFN therapy had a lower expression of
IFN genes consistent with amplification of the effector
arm of the immune response by exogenous therapy result-
ing in viral clearance.

Chronic HCV infection has been studied in a number of
ways using gene array analysis. The study of Honda et al.
profiled gene expression in liver biopsy material in indi-
viduals with chronic hepatitis B (HBV) and chronic HCV
comparing them to a single non-diseased control [75].
The authors concluded that chronic HCV infection was
associated with a predominant anti-inflammatory, pro-
proliferative, anti-apoptotic intrahepatic gene profile [75].
However, the presented data demonstrated widespread
upregulation of pro-inflammatory genes such as IL-2
Receptor, CD69, CD44, IFN gamma inducible protein,
MHC Class 1 genes and monokine induced by gamma
IFN. These findings were similar to another study of HCV
cirrhosis in which a pro-inflammatory Th1l associated
transcript expression predominated [76]. The Thl
immune response is thought to be responsible for the
accelerated fibrogenesis of HCV liver injury [77]. Fibrosis
associated gene expression in HCV associated fibrosis has
included upregulation of a wide variety of genes including
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PDGF, TGF-beta 3 [78]. Additionally, gene array analysis
has identified potential novel mediators of HCV associ-
ated injury such as Frizzled related proteins, discoid
domain related proteinl (DDR1), EMMPRIN and SARP-3
[76].

The premaligant potential of intrahepatic HCV infection
has been studied by our group by comparing HCV cirrho-
sis with and without HCC by gene array analysis [79]. The
upregulation of many oncogenes (i.e. TEL oncogene),
immune genes (IFN gamma associated), fibrosis genes
(integrins) as well as cell signalling (G coupled receptor
kinase) and proliferation associated genes (cyclin K) was
demonstrated in cirrhosis complicated by HCC. This is
consistent with a premalignant cirrhotic response in HCV
infection. Further, the data suggest that there is more cel-
lular proliferation, immune activation and fibrosis in the
liver of patients with HCC than those with cirrhosis alone.
A key area of future research will be to ascertain wether
such a profile can be recognised before HCC develops.
This approach has a direct clinical application in identify-
ing and screening high-risk patients.

Gene array studies of HCV infection has revealed new
insights into the development of HCC in HCV, structural
analysis of the HCV RNA genome and identified novel
markers of HCV intrahepatic injury and HCV associated
HCC. The study of Smith et al. utilized 13 600 gene micro-
arrays to profile patients with HCV cirrhosis, HCV and
HCC and normal liver [80]. The results identified 87
upregulated and 45 down-regulated genes that appear to
be markers of HCV liver injury [80]. Importantly, the anal-
ysis aimed to exclude genes expressed in normal liver,
other forms of cirrhosis or HCC. Genes such as ILxR (IL-
13 receptor a2), CCR4 and cartilage glycoprotein 39 (GP-
39) were identified [80]. However, the study of Smith et
al. highlights the problems with the interpretation of
these large data sets using small numbers of patient sam-
ples; does the identified gene expression represent unique
disease or phenotype associated gene expression or the
stochastic probability of identifying a small cohort of
genes from the many thousands being analysed? Cleary
studies such as these, as powerful as they are, need to be
validated by alternative methodologies in large patient
groups. Our own approach to validation has been to con-
firm important gene expression identified in these studies
by real-time RT-PCR in a larger cohort of patients [78,81].
Indeed our own results have confirmed the increased
expression of GP-39 in HCV associated cirrhosis identi-
fied following subtractive hybridization and confirmed
this finding by real-time RT-PCR [82].

Hepatocellular carcinoma proliferation in HCV associated
liver injury has been studied by array analysis. This has
resulted in a plethora of potentially novel tumour markers
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being identified. These include the serine/threonine
kinase 15 (STK15) and phospholipase A2 (PLA2G13 and
PLA2G7) that were shown to be increased in over half of
the tumours identified [80]. However, a different study
implicated different gene groups in HCV associated HCC;
cytoplasmic dynein light chain, hepatoma derived growth
factor, ribosomal protein L6, TR3 orphan receptor and c-
myc [83]. The clustering analysis in this study showed that
the expression of 22 genes in HCC related to differentia-
tion of the malignancy with over half of these genes being
transcription factors or related to cell development or dif-
ferentiation [83]. Although many of these genes can be
implicated in HCC development they often identified in
large gene sets in end stage disease. Therefore, whether
these genes represent cause or effect is unknown. Addi-
tionally, the number of differing gene sets being examined
by the gene arrays being utilized is almost as great as the
number of studies using them. Further as these gene sets
still only represent a fraction of the transcriptome being
examined they selectively identify differentially expressed
genes. The same group went on to examine the expression
of genes in hepatocyte cell lines expressing a-fetoprotein
(o-FP) [84]. Comparison with non a-FP producing cell
lines showed that the hepatocyte lines had a similar pat-
tern of gene expression [84]. Further, the cell lines Huh-7,
Hep3B and HepG2 clustered together suggesting that
these cells lines are closely related [84]. Indeed these cell
lines shared 254 genes (out of 930) that were commonly
up-regulated [84]. Genes increased in the o-FP producing
cell lines included o-FP, ephrin-A1, TGF-02, MMP-2 and
IGF-II [84]. This is entirely consistent with the known role
of these genes in carcinogenesis and more specifically
with transcriptional regulation of MMP-2 by IGF-II [85].
The oncogenic potential of viral components, especially
core protein, has been implicated by transcriptome profil-
ing in the pathogenesis of HCV associated HCC.

Gene array analysis of HCV recurrence in transplant allo-
grafts has provided novel insights into the molecular
mechanisms of viral recurrence [86,87]. HCV recurrence
in the liver graft is associated with expression of IFN-y
associated genes such as CXCL10 (IP-10), CXCL9
(HuMIG) and RANTES [87]. Further, antiviral IFN-o asso-
ciated gene expression is seen in chronic HCV recurrence
and during acute rejection associated with HCV recur-
rence [87]. Additionally, upregulation of NF-kappa f3
pathway during acute rejection in association with HCV
recurrence appears to alter cellular apoptosis via changes
in the expression of TRIAL associated genes [87]. Impor-
tantly chronic HCV recurrence in grafts is associated with
Th1 associated gene expression similar to that seen in
chronically HCV infected individuals that have not been
transplanted [87]. In contrast, cholestatic HCV recurrence,
which follows an aggressive course, is associated with a
Th2 cytokine profile [87]. This suggests that the Thl
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immune response suppresses viral replication whilst
being profibrogenic [78,87,88]. In cholestatic HCV recur-
rence the unchecked viral replication is directly fibrogenic
[87,88].

Gene array analysis in human liver disease — alcoholic and
steatotic liver disease

Alcoholic liver injury is an example of both a classical and
atypical hepatotoxin. Microarray analysis has been
applied to studies of neural tissue in an attempt to under-
stand ethanol addiction. Intrahepatic gene profiling using
microarrays in ethanol feed baboons has identified
increased expression of 14 different annexin genes
(including Al and A2) that were not previously impli-
cated in the progression of fibrosis in alcoholic liver dis-
ease [89]. Further, the intrahepatic transcriptome profile
in alcoholism shares some similarity with LPS administra-
tion but in general is significantly different from other
forms of liver disease [89,90]. Additionally, the hepato-
cyte transcript response to ethanol is significantly differ-
ent compared to other hepatotoxins such as anticancer
drugs [91].

Cluster analysis has allowed differentiation of alcoholic
hepatitis from alcoholic steatosis. Genes known to be
involved in alcohol injury such as alcohol dehydroge-
nases, acetaldehyde dehydrogenases, interleukin-8, S-ade-
nosyl methionine synthetase, phosphatidylethanolamine
N-transferase and several solute carriers have been shown
to be differentially expressed in alcoholic hepatitis versus
alcoholic steatosis. Many novel differentially expressed
genes were identified, including claudins, osteopontin,
CD209, selenoprotein and genes related to bile duct pro-
liferation [89]. The most prominent categories of differen-
tially expressed genes involved cell adhesion/extracellular
matrix proteins, oxidative stress and coagulation that were
also common to end-stage alcoholic liver disease. Genes
associated with fibrosis/cell adhesion/ECM were the most
prominent category in human advanced ALD, consistent
with the fibrotic nature of ALD. However, these were not
specific to alcohol, and have been reported in primary bil-
iary cirrhosis and other forms of liver cirrhosis [76,81].

Non-alcoholic steatohepatitis (NASH) is the clinico-
pathological syndrome in non-alcoholic fatty liver disease
(NAFLD) that has been most widely studied using gene
array analysis of transcript expression. Studies have iden-
tified differentially expressed genes in end stage NASH cir-
rhosis compared to other disease states [92-94].
Decreased expression of genes associated with mitochon-
drial function and increased expression of genes associ-
ated with the acute phase response were observed [92].
The latter increases were speculated to be associated with
insulin resistance, a feature of NAFLD [92]. Further differ-
ential expression of genes involved in lipid metabolism,
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extracellular matriz (ECM) remodelling, regeneration,
apoptosis and detoxicification have all been observed in
NASH following microarray analysis [93].

Gene array analysis in human liver disease — biliary liver
injury

Biliary liver injury has only been examined in a limited
number of studies utilizing array analysis. The induction
of Wnt pathway genes including Wnt13, Wnt5A, and
Wnt12 was a striking and confirmed finding of gene array
studies of primary biliary cirrhosis (PBC) [81]. Further
novel PBC associated transcript expression included
upregulation of Transcription initiation factor 250 kDa
subunit (TAFII 250), PAX3/forkhead transcription factor
and patched homolog (PTC). An unexpected but consist-
ent feature of the gene array analysis of PBC was the
repeated identification of differentially expressed Dro-
sophila genes homologues (Wnt genes, hedgehog path-
way, notch pathway) [81].

The only available data on primary sclerosing cholangitis
(PSC) cirrhosis comes from a comparison to PBC cirrhosis
[81]. Compared with PBC there were a far greater number
of genes showing differential expression in PSC versus
non diseased liver. These include genes associated with
epithelial biology (Amphiregulin, Bullous pemphigoid
antigen), inflammation (T-cell Secreted Protein P 1-309,
CTLA4), apoptosis related genes (Bcl-2 interacting killer,
Bcl-x, Death associated protein 3) and intracellular
kinases such as CDK7 and JAK1.

Biliary atresia (BA) has been studied by microarray analy-
sis by comparing embryonic and perinatal forms of the
disease [95]. Gene profiling clearly separated these two
conditions. The most remarkable difference was in the
expression of so-called regulatory genes. In Embryonic BA
45% of differentially expressed genes were in this category
versus 15% in the perinatal form. Included in these genes
were imprinting genes, genes associated RNA processing
and cell cycle regulation that were not present in the peri-
natal form of BA.

Gene array analysis in cultured cells

Experiments with cells in culture offer the advantage of a
controlled environment in which to test specific hypothe-
ses without influences at the level of the organ, organism
or environment. Gene array technology has been used to
characterise cells in culture in greater detail than previ-
ously possible. The techniques have been applied to study
cellular differentiation and behaviour in response to tox-
ins and various disease states. Despite the advances
derived from this novel technology, limitations of the cel-
lular models apply to these studies as well. For example,
cellular function is altered by the culture conditions and
may not represent those found in vivo.
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Gene array analysis in cultured cells - cellular
differentiation

Gene expression array analysis has been applied to iden-
tify the multiple signals involved in cellular differentia-
tion. Corticosteroids, hepatocyte growth factor (HGF),
and epidermal growth factor are associated with mature
histology in the organoid culture model [96]. Array anal-
ysis identified that these factors stimulate hepatocyte
nuclear factor 4alpha (HNF-4alpha) expression in hepato-
cytes [96]. HNF-4alpha is a recognized liver-specific tran-
scription factor and its effects on hepatic gene expression
have also been studied. Almost half of the induced genes
were metabolism genes many related to lipid metabolism
which is frequently altered in liver disease [97]. Yamashita
and colleagues determined target genes for hepatocyte dif-
ferentiation and found that the Oct-3/4 transcription fac-
tor was upregulated while the early growth response-1
(EGR-1) transactivator was down-regulated [98]. Gap
junctions are considered to play a central role in differen-
tiation of hepatocytes. Connexin 32 (Cx32) is closely
related to tight junctional proteins and can induce expres-
sion and function of tight junctions. To investigate the
mechanisms of induction of tight junctions, cells trans-
fected with Cx32 were analysed by cDNA microarray [99].
Expression of membrane-associated guanylate kinase
with inverted orientation-1 (MAGI-1) was increased.
MAGI-1 is known to be localized at adherens and tight
junction regions. MAGI-1 was expressed in the apical-
most regions at cell borders of Cx32 transfectants and co-
localized with occludin, claudin-2, ZO-1, and F-actin [99].

Gene array analysis in cultured cells — hepatocytes

Cultured primary hepatocytes have proven to be a valua-
ble resource and extensively used research tool but ques-
tions remain regarding functional differences observed in
these hepatocytes relative to the intact liver [97,98,100-
103]. One study characterized cultured hepatocyte cell
lines, primary hepatocytes in conventional monolayer or
in sandwich culture, and liver slices based on mRNA
expression profiles in comparison to gene expression in
liver tissue [103]. Liver slices exhibited the strongest simi-
larity to liver tissue regarding mRNA expression, whereas
the two cell lines clustered together and were quite differ-
ent from the whole liver. For selected cytochrome P450s
the differences observed on the mRNA expression level
there was a marked effect with the duration of culture.
Expression patterns changed most rapidly soon after cell
isolation and culture initiation and stabilized with time in
culture [103]. A second study of cultured hepatocytes over
time revealed time-dependent regulation of phase I and
phase II metabolizing enzymes [100]. In general, cyto-
chrome P450 mRNA expression was repressed, but expres-
sion of phase II metabolizing enzymes varied by class
(upregulation of glucuronidation, down-regulation of
sulfation). Progressive induction of several genes associ-
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ated with the cellular cytoskeleton and extracellular
matrix was observed in accord with physical changes in
cell shape and connectivity associated with cellular adhe-
sion [100].

Gene expression profiling has been utilised to define the
molecular mechanism underlying epithelial non-paren-
chymal interactions in hepatocyte cocultures. Primary rat
hepatocytes were cocultivated with closely related murine
fibroblast cell types and revealed functional responses
that correlated with fibroblast gene expression profiles.
Two candidates playing an important role in functional
differentiation were the cell surface protein neural cad-
herin (N-cadherin) and decorin [102].

Gene array analysis in cultured cells — hepatic stellate cells
c¢DNA microarray was used to identify genes upregulated
in activated hepatic stellate cells (HSCs) in culture
[104,105]. In one study, a number of novel and previ-
ously recognised genes were identified including oste-
opontin (OPN) [104]. In another, a total of 835
differentially expressed genes were identified in an array
comparison of activated and quiescent HSC. The differen-
tially expressed genes included those involved in protein
synthesis, cell-cycle regulation, apoptosis, and DNA dam-
age response [105]. Functional expression of the telomer-
ase catalytic subunit (human telomerase reverse
transcriptase; hTERT) in human activated hepatic stellate
cells (HSCs) rescues them from death with immortaliza-
tion and maintains an activated HSC phenotype [106].
Senescent HSCs expressed reduced levels of extracellular
matrix proteins, including collagens, tenascin, and
fibronectin. Maintenance of telomere length represents an
important survival factor for activated human HSCs
[107]. Using this information, Schnabl and colleagues
have created an immortalized human HSC line by infect-
ing primary human HSCs with a retrovirus expressing
hTERT [106]. Telomerase-positive HSCs did not undergo
oncogenic transformation and exhibit morphologic and
functional characteristics of activated HSCs. Microarray
and RT-PCR analysis showed that mRNA expression pat-
terns in telomerase-positive HSCs are very similar to those
in activated human HSCs [106]. The immortalized HSC
lines LX-1 and LX-2 were characterized by microarray
analysis and determined to have a gene expression profile
very similar to that of activated primary HSC [108]. These
newly developed cell lines are proving to be valuable tools
to study the biology of human HSCs.

Gene array analysis in cultured cells — viral hepatitis

A particular challenge in the study of the effect of viruses
on liver cells is the difficulty in infecting liver cells with
virus. The studies described below have involved models
in which cultured cells are infected with viral proteins or
viral genome. Progress in this field has been rapid and
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most recently, a cellular model of HCV infection has been
reported that is likely to stimulate further study [109,110].

To determine the oncogenic role(s) of HBx protein Hepa-
titis B virus (HBV) in the development of HCC, gene
expression profiles in primary adult human hepatocytes
and an HCC cell line (SK-Hep-1) ecotopically expressing
HBx via an adenoviral system. Many genes including a
subset of oncogenes (such as c-myc and c-myb) and
tumour suppressor genes (such as APC, p53, WAF1 and
WT1) were differentially expressed and cluster analysis
showed distinctive gene expression profiles in the two cell
types. HBx protein altered gene expression as an early
event that favours hepatocyte proliferation that may con-
tribute to liver carcinogenesis [111].

Interferon-alpha is currently the leading treatment for
viral hepatitis. Several studies have used microarray anal-
ysis to identify the mechanisms by which interferon-alpha
(IFN-alpha) acts on hepatocytes and the hepatitis C virus.
IFN-alpha activated the multiple signal transducer and
activator of transcription factors (STAT) 1, 2, 3, 5 in cul-
tured hepatocytes [112]. Other up-regulated genes
include a variety of antiviral and tumour suppressors/
proapoptotic genes. Down-regulated genes include c-myc
and c-Met and the HGF receptor [112]. In a second and
comparable study, IFN-alpha antiviral efficacy was associ-
ated with 6-16 (G1P3) expression. Involvement of STAT3
in IFN-alpha signalling was confirmed [113]. Resistance
to IFN-alpha antiviral activity may be mediated the hepa-
titis C viral protein, NS5A. To identify the mechanisms
through which NS5A blocks interferon activity, gene
expression profile was studied in IFN-treated Huh7 cells
expressing NS5A. The strongest effect of NS5A on inter-
feron response was observed for the OAS-p69 gene [114].
Another key response of hepatocytes to the HCV virus is
cellular proliferation. Gene array studies identified upreg-
ulation of growth-related genes, in particular wnt-1 and its
downstream target gene WISP [115]. In another study,
CDK activity, hyperphosphorylation of Rb, and E2F acti-
vation was shown to be associated with hepatocyte prolif-
eration induced by a full-length HCV clone [116].

Gene array analysis in cultured cells - mechanisms of drug
action

A number of studies have investigated the effects of toxins
and therapeutic drugs in cultured liver cells using array
techniques. Perhaps surprisingly, studies of the effects of
alcohol on liver cell gene expression in vitro have not
been reported. It has been proposed that transcription
profiling can generate the information needed to assign a
compound to a mode-of-toxicity class. Primary rat hepa-
tocytes have been exposed to a variety of different hepato-
toxins on the basis of their variety of hepatocellular effects
[117,118]. A low-density DNA microarray containing 59
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key genes was selected. All tested drugs generated a spe-
cific gene expression profile. Even with a relatively limited
gene set, gene expression profiling allowed a certain
degree of classification of compounds with similar hepa-
tocellular toxicities such as cholestasis or necrosis. Clus-
tering analysis linked the compounds known to cause
hepatic steatosis. Drugs inducing necrosis and cholestasis
clustered together and drugs classified as the CYP450
inducers formed individual clusters [119].

The pathways underlying ursodeoxycholic acid (UDCA)
action were investigated by array analysis in primary rat
hepatocytes [120]. In cells exposed to UDCA, >440 genes
were modulated by >1.5-fold. Genes affected by UDCA
included new regulatory molecules, such as Apaf-1. Other
altered genes were directly involved in cell cycle (cyclin
D1, cadherin 1, HMG-box containing protein 1) and
apoptosis (prothymosin-alpha) events. The E2F-1/p53/
Apaf-1 pathway appears to be targeted by UDCA [120].

Saturated fat plays a role in common debilitating diseases
yet the molecular mechanisms of saturated fatty acid sig-
nalling in the liver are poorly defined. Hepatic gene
expression analysis was undertaken in a human hepato-
cyte cell line after incubation with palmitate [121].
Altered transcription profiles were observed in a wide vari-
ety of genes, including genes involved in lipid and choles-
terol transport, cholesterol catabolism, cell growth and
proliferation, cell signalling, beta-oxidation, and oxida-
tive stress response [121]. Streptozotocin (SZ) is known to
exert toxic effects not only on pancreatic islet beta cells but
also on other organs including the liver. Primary cultured
hepatocytes were treated with SZ [122]. Gene expression
analysis revealed up-regulation in cell proliferation/apop-
tosis related genes, and down-regulation of lipid metabo-
lism related genes. These results indicate that many of
hepatic alterations are direct effects of SZ rather than by
the secondary effect of the hyperglycaemia or hypoin-
sulinemia [122].

Microarray analysis was conducted on isolated human
hepatocytes to understand the mechanisms underlying
the idiosyncratic toxicity induced by trovafloxacin [123].
The results clearly distinguished trovafloxacin from other
marketed quinoline agents and identify unique gene
changes induced by trovafloxacin that are involved in
mitochondrial damage, RNA processing, transcription,
and inflammation [123]. The mechanism(s) by which
LPS stimulates cultured hepatocytes was studied by DNA
microarray analysis. LPS modulates the selective expres-
sion of more than 80 genes and expressed sequence tags
including members of relevant signalling pathways. NF-
kappa B activation was reduced in TLR4-mutant or -null
hepatocytes compared to control hepatocytes, and this
defect was partially restored by adenoviral transduction of
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mouse TLR4. This study provided additional evidence that
hepatocytes respond to LPS through a TLR4 response
pathway [124].

Gene arrays and animal models

Animal model studied include acute liver regeneration,
drug toxicity, liver fibrosis, fatty liver, biliary obstruction,
liver transplantation and carcinogenesis. Drug toxicity
studies are numerous and include effects induced by clof-
ibrate, PPAR alpha agonists, carbon tetrachloride, amio-
darone, arsenic and methotrexate [117,125-134]. In one
study, a novel cDNA library highly enriched for genes
expressed under a variety of hepatotoxic conditions was
created and used to develop a custom oligonucleotide
library [135].

An expression signature for rat liver fibrosis was identified
using a cDNA 14,814 gene microarray [136]. The "genetic
fibrosis index" identified consisted of 95 genes (87 upreg-
ulated, 8 down-regulated). These included genes associ-
ated with cytoskeletal proteins, cell proliferation and
protein synthesis. Bile obstruction in the mouse identified
3 sequential main biological processes. At day 1, enzymes
involved in steroid metabolism were over expressed. This
was followed by an increase in cell cycle/proliferation
associated genes at day 7, occurring at a time of maximum
cholangiocyte proliferation. From days 14-21 genes asso-
ciated with the inflammatory response and matrix remod-
elling were identified. Similar temporal gene expression
was identified in the model of acute liver regeneration.
Steroid and lipid metabolism genes were down-regulated
as early as 2 hours post hepatectomy whilst genes associ-
ated with cytoskeletal assembly and DNA synthesis
became upregulated by 16 hours and remained elevated at
the 40 hour time point at the peak of S phase.

Carcinogenic foci in experimental animals have been iso-
lated and studied using gene array technology [137].
Approximately 8% of 2000 transcripts were differentially
expressed in one study. These included genes with roles in
signal transduction, detoxification and cytoskeletal
assembly. Over 30 genes were identified as being dysregu-
lated in these foci as well as in neonatal liver. Small for
size liver allografts in rats showed upregulation of adhe-
sion molecule, inflammatory mediators and apoptosis-
associated genes together with a down regulation of
energy metabolising genes.

Alcoholic liver disease has been studied in the chronic
enterogastric ethanol infusion model in a mouse, a total
of 12,422 genes were analysed [138]. Several cytochrome
P450 genes were shown to be upregulated, whilst several
genes involved in fatty acid metabolism (stear-a oil co-aid
saturase 3-hydroxy-assile co-aid dehydrogenase) and fatty
acid synthesase were down regulated. In contrast, genes
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associated with glutathione-s-transferase were markedly
upregulated. Interestingly, a novel molecule intestinal fac-
tor was 50-fold down-regulated. It was postulated that
alcohol may be affecting the healthy intestinal epithelium
and down-regulation of this gene may be associated with
permeability changes in the intestine associated with
chronic alcohol ingestion.

"Open system" analysis of transcriptomes

Although array analysis is the predominant technique for
examining differential gene expression other techniques
such as differential display, SAGE [139] and subtractive
hybridisation [34] are useful complementary methods of
examining transcriptomes.

Differential display

Differential display involves the use of non-stringent
primer sets and PCR amplification to give a pool of prod-
ucts that are resolved on a polyacrylamide or PAGE gels
[140-143]. The number of primer set combinations
needed to screen a whole transcriptome varies but can be
as many as 300 [142,143]. One of the benefits of differen-
tial display techniques is the ability to use small amounts
of starting material as well as the ability to analyse multi-
ple different samples [142,143]. Unfortunately, differen-
tial display is not a sensitive method of detecting rare RNA
species [143]. Additionally, differential display has a high
false positive rate of identifying differentially expressed
genes [143]. Therefore, differential display is a labour
intensive technique that requires additional methodology
to confirm differential expression [140,141].

The application of mRNA differential display to liver dis-
ease has in general implicated previously uncharacterised
or completely novel genes in liver pathobiology, espe-
cially in HCC pathogenesis. There are now in excess of
300 publications using differential display in liver disease.
These studies include the identification of increased F-
LANa expression in HCC [144]. F-LANa was a previously
uncharacterised sequence associated with increased
tumour cell growth [144]. Differential display has identi-
fied hepatic genes previously unsuspected as differentially
expressed due to circadian transcription changes (includ-
ing presenilin II) [145]. The application of differential dis-
play to evaluate the effect of iron overload on HepG2 cells
has shown increased mRNA expression of semaphorin
¢d100 and aldose reductase and a decrease in apolipopro-
tein B100 mRNA expression [146]. Vitamin E administra-
tion blocks the increases in apolipoprotein B100 whilst
H,0, treatment increased only aldose reductase expres-
sion [146]. Therefore, it appears that iron affects both
LPO-dependent and LPO-independent pathways. Further,
studies have shown gene differential expression compar-
ing peri-portal and peri-central hepatocytes identifying
some of the molecular pathways responsible for the heter-
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ogenous nature of the hepatic lobule [147]. Further in
HBV surface antigen transgenic mice, Pim-3, has been
identified by differential display as a mediator of autono-
mous cell proliferation that is only expressed in HCC tis-
sue[148]. The combined use of differential display and
microarrays has identified sodium butyrate responsive
genes such as CBI-2 and Mcl-1/EAT that appear to be
involved in stimulating hepatocellular carcinoma cells
into a normal phenotype[149]. This study demonstrates
the utility of combining complementary methods of stud-
ying transcriptomes.

Serial analysis of gene expression

SAGE is a technique that relies on the fact that short nucle-
otide sequences of 9 to 11 bases contain enough informa-
tion to identify a clone (known as a tag) [4,139,150].
SAGE uses a biotinolyated oligo dT primer to prepare
cDNA that is cleaved with a 4-bp recognition site endonu-
clease [139]. The 3' end of the cDNA is then isolated using
streptavidin and ligated to a linker that contains a type IIS
restriction site [139]. The type IIS restriction endonuclease
cleaves the cDNA giving a small 9 - 11 base sequence
attached to the linker [139]. These multiple small
sequences are concatenated together and sequenced
[139]. Although SAGE provides both a quantitative and
qualitative analysis of total gene expression it is not gen-
erally suited for widespread use given its reliance on inten-
sive sequencing.

Serial analysis of gene expression has been applied to the
pathobiology of human liver disease. Three studies have
profiled normal human liver, chronic HCV liver and HCC
tissue using SAGE [7,11,151]. In normal liver a total of 30
982 tags were identified that comprised 8 596 unique
genes [7]. Tags that were expressed 10 or more times con-
stituted 57.3% of the total tags but only 4.1% of the
unique genes [7]. The breakdown of the unique tags
showed that 21.8% were plasma proteins, 8.6% were cyto-
plasmic proteins, 4.8% were enzymes, 1.7% were protease
inhibitors, 1.1% were complement components and
0.75% were coagulation factors [7]. Importantly, the func-
tion of at least 13.9% of the intrahepatic genes identified
could not be determined [7]. The five most abundant
transcripts identified in normal liver were albumin, apol-
ipoprotein (Apo) A-1, Apo C-I, Apo C-II and ATPase 6/8
[7]. The abundance of selected SAGE transcripts correlated
strongly with previously documented EST frequency in
HepG2 cells (12 = 0.96) [7]. The same group in a related
SAGE study of chronic HCV and HCC tissue, isolated 31
381 and 32 217 tags respectively [11]. This equated to 10
172 unique genes in HCV and 13 372 unique genes iden-
tified in HCC. Combing the SAGE results for normal,
HCV and HCC tissue gave a total of 94 580 tags represent-
ing 24 464 unique genes [7,11]. Importantly, only 2 114
of these unique genes (8.6%) were expressed in all three
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SAGE libraries [7,11]. This suggests that these SAGE librar-
ies were an incomplete representation of the hepatic tran-
scriptome in normal and diseased states. In HCV cirrhosis
the most abundant tags that were differentially expressed
when compared to normal liver included; MHC class 1,
immunoglobulin x chain, heat shock proteins, and
DEAD/H box polypeptide 5 [11]. In HCC the genes that
were increased included MHC class I, transmembrane
protein BR1, glypican 3, DEAD/H box polypeptide 5 and
CXCL-10 [11]. The 116 unique genes identified were dif-
ferentially expressed in HCV compared to HCC tissue
[11]. The results from Yamashita et. al. [7,11] contrast
with those of Kondoh et. al. [151], who used a modified
SAGE method to generate 50 515 tags from HCC tissue
and 50 472 tags from cirrhotic tissue (4 out of 5 of these
patients had HCV cirrhosis) representing 20 534 and 15
163 unique clones respectively. However, Kondoh et. al.
found only eight known genes that differed between HCC
and the cirrhotic tissue (galectin4, UDP-glucuronosyl-
transferase, ribosomal phosphoprotein PO, dek, IGFBP-1,
vitronectin, retinoic acid induced gene E and CYP I11A4)
[151]. Further, Kondoh et. al. could only confirm the dif-
ferential expression of a single gene, CYP 111A4, by North-
ern blot analysis [151]. The results of all three SAGE
studies suggest that the hepatic transcriptome increases in
complexity with disease. The explanation for the marked
difference in the extent of gene expression between HCC
and cirrhotic tissue (predominantly HCV cirrhosis) in two
of these studies is unclear. SAGE analysis has also been
used to identify biomarkers of non-parenchymal cell pop-
ulations. A comparison of over 70 000 transcripts from
liver sinusoidal endothelial cells (LSEC) with and without
CCl, administration has identified multiple genes includ-
ing Cdknla and Irf1 upregulated with injury and Stab2 a
marker of LSEC [152].

Subtractive hybridisation

Subtractive hybridisation is a method of enriching for dif-
ferentially expressed genes in one gene pool compared to
another [34]. The essential feature of this method is that
one gene pool is labelled or tagged enabling the separa-
tion of unique transcripts from the tester (also called
tracer) gene pool following hybridisation to an excess of
driver cDNA [34]. The starting material is often limited
and amplification is performed prior to subtraction using
a number of techniques such as poly(A) RT-PCR, Eber-
wine amplification and SMART cDNA synthesis (Clon-
tech, CA, USA) [34]. The technique classically uses a
biotinylated driver enabling common sequence in the
driver and tester gene pools to be removed using strepta-
vidin precipitation [34]. Multiple rounds of subtraction
can be performed giving a tester gene pool enriched for
differentially expressed genes [34]. A number of tech-
niques related to subtractive hybridisation include repre-
sentational differences analysis (RDA) and suppression
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subtractive hybridisation (SSH). Representational differ-
ences analysis uses PCR amplification of the unique tran-
scripts in the cDNA pool [153,154]. This can give a greater
than 100 fold enrichment of differentially expressed cDNA
in three rounds of amplification [153,154]. RDA has been
utilised to find unique genomic DNA mutations as well
comparing mRNA transcript pools [153,154]. SSH utilises
PCR amplification (like RDA) combined with the sup-
pression effect of PCR [155,156]. The suppression effect is
mediated by the incorporation of long inverted terminal
repeats which, when attached to the ends of DNA frag-
ments, form stable panhandle-like loop structures that are
favoured over the shorter PCR primers [155,156]. There-
fore, undesirable sequences are not amplified in the PCR.

All subtractive hybridisation approaches simply enrich for
differentially expressed genes. Individual gene differential
expression needs to be confirmed by supplemental meth-
odology. The supplemental methodology used varies but
includes northern blot analysis and PCR based methods.
Northern blot analysis, although an accurate method of
quantification, that additionally gives information about
mRNA transcript size, is limited by being labour intensive
and lacks the throughput necessary to match the subtrac-
tive hybridisation approach. Additionally, Northern blot
analysis is restricted to moderate to high abundance tran-
scripts. PCR based methods are now the preferred means
of confirming differential gene expression. Real-time
quantitative RT-PCR is a rapid and effective means of con-
firming gene differential expression. The multiple meth-
ods of performing real-time RT-PCR include the use of
FRET probes, molecular beacons and the use of the double
strand intercalating flurophore Sybr Green 1 [157-159].
Real-time RT-PCR has the additional benefit of being able
to confirm differential expression of lowly expressed
mRNA transcripts [160]. Indeed the use of real-time RT-
PCR is now used not just to confirm differential gene
expression following subtractive hybridisation but also to
confirm differential gene expression following cDNA
array analysis, differential display and SAGE.

Subtractive hybridisation has been used to investigate the
pathobiology of human liver disease. There are now in
excess of twenty papers that utilise subtractive hybridisa-
tion to investigate liver injury. The SSH variation,
described above, is now the most commonly utilised sub-
tractive hybridisation method [156,161]. Further, SSH
unlike mRNA differential display appears to have a greater
yield in terms of the number of genes identified that are
both known and novel in an individual experiment. The
identification of gankyrin in HCC using SSH is a signifi-
cant finding as this oncoprotein, with ankyrin repeats, has
been demonstrated to increase anchorage-independent
growth and tumorigenicity in NIH/3T3 cells [162].
Gankyrin appears to increase the phosphorylation of the
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retinoblastoma gene with activation of the E2F-1 tran-
scription factor [162]. Studies of iron overload have previ-
ously demonstrated iron overload in knockout mice
lacking the Usf-2 transcription factor in a pattern similar
to the HFE -/- mouse, the murine model of genetic
haemachromatosis [163]. Comparison of intrahepatic
gene expression in Usf-2-/- and Usf-2+/+ mice by SSH
showed a marked down-regulation of the mRNA encod-
ing hepcidin (also known as liver expressed antimicrobial
peptide) [163]. Concurrently, Pigeon et. al. also identified
increased hepcidin expression using SSH in carbonyl
treated mice that have iron overload [164]. Therefore,
hepcidin appears to act in conjunction with HFE to regu-
late intestinal iron absorption and iron storage in macro-
phages although the exact mechanism is still unknown
[163,164]. The study of hepatitis C infected livers using
SSH confirms a Th1l associated immune profile with
CXCL-10, IEN regulated MxA, IFN induced p44, and IFN
induced p56 (IFI-56 K) all increased greater than 4 fold in
chronic HCV infection [165]. The identification of
increased CXCL-10 in HCV infection has now been dem-
onstrated using both array analysis and SSH [165,166].
Further, a study of PBC using SSH identified a total of 71
differentially expressed sequences with 62 being known
genes and the remaining 9 clones homologous to EST
sequences [167]. Interestingly, two of the sequences
enriched for in PBC included Wnt13 and notch2 suggest-
ing an involvement of these highly conserved Drosophila
pathways in PBC pathobiology [167]. Unfortunately,
many of the studies utilising SSH do not utilise supple-
mental methodology to confirm differential gene expres-
sion.

Our own work with SSH utilized this technique as a
method of bio-discovery rather than a means of profiling
transcriptomes. By comparing human HCV, AIH, PBC
and non-diseased liver in multiple paired comparisons we
were able to uncover completely novel sequences
involved in the pathogenesis of these human liver dis-
eases [82]. The reliance on sequencing clones helped us
identify previously unrecognised spliced variants of the
gene RERE in HCV cirrhosis [82]. Further our results iden-
tified genes such GP-39 and 2,5-oligoadenylate synthetase
that had been identified previously by other techniques
[82]. Additionally, we extensively used real-time RT-PCR
to validate the observed gene expression [82].

Conclusion

The study of transcriptomes using functional genomic
methods is beginning to unravel the complexities of the
human gene expression. The use of functional genomics
methods, led by gene array analysis, has significantly
advanced our understanding of organ and cell specific
transcriptomes. Hepatic specific transcriptome analysis
has addressed important aspects of viral hepatitis infec-
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tion, xenobiotic metabolism, alcohol effects and liver
transplantation. However, there have been comparatively
few studies of the normal liver transcriptome. Questions
about hepatic transcriptome differences due to factors
such as diet, age, gender and ethnicity remain unan-
swered. Additionally, the relationship of the hepatic tran-
scriptome to the proteome has demonstrated that a
significant proportion of proteins are not regulated by the
expression of mRNA transcripts. Further, most of the stud-
ies to-date "sample" a portion of the transcriptome rather
than profiling entire transcriptomes.

Complementary methodologies including SAGE, DD and
SSH demonstrate the benefits and deficiencies of gene
array analysis of transcriptomes. The application of multi-
ple methods to study transcriptomes enables profiling as
well as bio-discovery of known and novel sequences. Fur-
ther, the use of supplemental methodology to confirm
observed differential gene expression is both necessary
and increasingly widespread. Finally, a discussion of tran-
scriptome analysis would be incomplete without recogni-
tion of the unique role of proteomic methodologies that
provide researchers with yet another option of profiling
the expression of the genome. Indeed the distinction
between the transcriptome and proteome is becoming
blurred as we are now beginning to focus on the "phe-
nome" [168,169].

In conclusion, whole transcriptome analysis is a means of
examining organ and cell pathobiology. The caveats are
many but the potential advances in understanding liver
disease are clearly immense. In contrast to a reductionist
approach, examination of the entire transcript milieu will
help us define gene relationships and patterns of expres-
sion that define disease. The promise heralded by the
sequencing of the genome is being realized!
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