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Abstract
Background: Shear stress forces acting on liver sinusoidal endothelial cells following resection
have been noted as a possible trigger in the early stages of hepatic regeneration. Thus, the
morphology and gene expression of endothelial cells following partial hepatectomy or shear stress
in vitro was studied.

Results: Following partial hepatectomy blood flow-to-liver mass ratio reached maximal values 24
hrs post resection. Concomitantly, large fenestrae (gaps) were noted. Exposure of liver sinusoidal
endothelial cells, in vitro, to physiological laminar shear stress forces was associated with
translocation of vascular endothelial cell growth factor receptor-2 (VEGFR-2) and neuropilin-1
from perinuclear and faint cytoplasmic distribution to plasma membrane and cytoskeletal
localization. Under these conditions, VEGFR-2 co-stains with VE-cadherin. Unlike VEGFR-2, the
nuclear localization of VEGFR-1 was not affected by shear stress. Quantification of the above
receptors showed a significant increase in VEGFR-1, VEGFR-2 and neuropilin-1 mRNA following
shear stress.

Conclusion: Our data suggest a possible relation between elevated blood flow associated with
partial hepatectomy and the early events occurring thereby.

Background
Following partial hepatectomy (PHx) the remaining liver
is transfused by normal blood volume, thereby exposing
liver sinusoidal endothelial cells (LECs) to excess hemo-
dynamic forces. These forces have been noted as an early

event leading to liver restoration in rats [1-3]; however,
the idea that quality of the blood rather than quantity has
been the accepted dogma [4,5]. Based on time-scale
events, shear stress inflicted on liver cells precedes the
expression of factors some of which are expressed within
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minutes. Studies conducted in recent years indicate that
shear stress induced NO leads to the expression of genes
participating in liver regeneration including c-fos [6-8].
There is evidence demonstrating that increase of c-fos in
PHx or portal branch ligation models is inhibited by N-
nitro-L-arginine methyl ester, which blocks NO synthase
[8]. The present study was undertaken to examine the
molecular and ultrastructural effects of hemodynamic
forces on LECs. We have chosen to focus on vascular
endothelial cell growth factor (VEGF) receptors (VEGFRs),
as these are present on endothelial cells and have been
demonstrated not only to have a role in liver regeneration,
but also to be affected by shear stress conditions. Follow-
ing PHx [9], VEGF is expressed in periportal regions dem-
onstrating lobular heterogeneity [10,11]. VEGFR-1 and
VEGFR-2, as well as Tie 1, Tie 2 and platelet-derived
growth factor, are all shown to increase in endothelial
cells following PHx [12]. We have demonstrated the stim-
ulatory effects of both VEGF-165 and VEGF-121 on liver
cell proliferation following PHx [13,14]. In a recent study
[15], it was shown that shear stress causes the induction
and translocation of VEGFR-2 to the nucleus in bovine
aortic endothelial cells. In addition, it promotes the for-
mation of a complex comprising VEGFR-2, VE-cadherin
and β-catenin. It is postulated that the complex acts as a
shear stress receptor, mediating signals into the cells.
Here, we describe the relationship between elevated
blood flow to the liver following PHx and the morphol-
ogy alterations associated with lining endothelial cells.
We also provide evidence demonstrating that shear stress
imposed on LECs in vitro is accompanied by a significant
increases in VEGFR-1, VEGFR-2 and neuropilin-1 mRNA
levels. Furthermore, following shear stress both receptors
alternate from perinuclear and faint cytoplamic orienta-
tion to adhere to cytoskeletal components and cell mem-
brane. These changes coincide with the behavior of the
adherence junction proteins VE-cadherin and β-catenin.

Results
Portal blood flow following liver hepatectomy
Seventy percent of PHx is associated with cell proliferation
and a gradual increase in liver mass (data not shown).
Nine days post-hepatectomy close to 80% of the original
liver weight was restored. PCNA labeling index peaked at
48 hrs thereby returning to preoperative values. Concom-
itant with liver resection an immediate increase in blood
flow to the remnant liver was evident, reaching a maxi-
mum of 2.5 fold at 24 hrs (Fig. 1). Elevated values
remained for as long as 72 hrs. Ten days following partial
hepatectomy blood flow returned to normal. Values
recorded earlier than 20 minutes are subject to technical
difficulties; therefore, they are not presented.

LEC Ultrastructure following partial hepatectomy
The effects of partial hepatectomy and the associated
shear stress developing as a result of excessive blood flow
to the remnant liver were evaluated with the aid of scan-
ning electron microscopy. Special emphasis was given to
the influence of these forces on the surface of liver sinu-
soids and intactness of the endothelial lining.

Under normal conditions, liver lobule sinusoids show an
intact endothelial lining, consisting of LECs with flattened
processes perforated by small fenestrae. These fenestrae
measure 0.15–0.2 µm in diameter and are arranged in
groups, sieve plates (Fig. 2a). As early as ten minutes post
hepatectomy, endothelial changes were already noted in
the form of fused fenestrae (gaps), ranging in size between
0.3 µm and 2 µm (Fig. 2b). These gaps were more promi-
nent in periportal than pericentral areas (Table 1).
Increasing values were noted in subsequent times, 24 (Fig.
2c), 72 (Fig. 2d) and 168 hrs (Fig. 2e) post-surgery in both
areas. Ten days after hepatectomy, the morphology of the
endothelial lining (Fig. 2f) and number of gaps returned
to preoperative conditions (Table 1).

Transmission electron microscopy was used to study in
great detail the above alterations. (Fig. 3). Control tissue
showed an intact relationship between LECs and neigh-
boring liver parenchymal cells (Fig. 3a). The sinusoid was
patent and empty; the wall of the sinusoid was composed
of a thin layer of fenestrated endothelium covering the
space of Disse, filled by microvilli extending from the
parenchymal cell surface. These parenchymal cells con-
tained glycogen, a few lipid vesicles, and numerous

Portal blood flow in normal and 70% partially hepatect-omized ratsFigure 1
Portal blood flow in normal and 70% partially hepate-
ctomized rats. At the designated time following partial 
hepatectomy rats were anesthetized and placed on a temper-
ature controlled table. Following tracheotomy and saline 
infusion an ultrasound sensor was fixed to the portal vein. 
Blood flow was monitored by ultrasonic flowmetry. Results 
represent an average of 5 rats + 2 × SD.
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Scanning electron micrographs of liver periportal sinusoidsFigure 2
Scanning electron micrographs of liver periportal sinusoids. (a) control, (b-f) following partial hepatectomy; control 
liver (a) demonstrates an intact fenestrated wall (arrow) and undisrupted bordering parenchymal cells (Pc). Inset depicts 
fenestrae (arrowhead). (b) Numerous gaps (arrow) are observed as early as ten minutes after PHx. Inset shows a detailed 
image of gaps (arrow) and fenestrae (arrowhead). (c) 24 hrs after PHx, gaps (arrow) are still present. Note the protruding 
microvilli from the underlying parenchymal cell surface (arrowhead). Small structures (*), probably platelets, could be noticed 
adhering to endothelial wall. 72 hrs (d) and 168 hrs (e) after PHx, depicting features similar to those seen in (c). (f) Ten days 
after PHx an intact endothelial lining (arrow) and fenestrae (arrowhead) could be observed. Scale bars: 2 µm; Insets: 0.5 µm.
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organelles in their cytoplasm (Fig. 3a). Ten minutes after
hepatectomy, many blood platelets adhered to the
endothelial lining. In addition, the endothelial lining
became disrupted as represented by the occurrence of gaps
and microvilli, which were facing directly toward the sinu-
soidal lumen (Fig. 3b). These morphological alterations
were still present 24, 72 and 168 hrs after PHx. Lipid accu-

mulation in the form of droplets could be observed in the
cytoplasm of parenchymal cells 10 hrs (data not shown)
after partial hepatectomy, persisting until day 3 (Fig. 3d).
To avoid any possible effect caused by the procedure and
anesthetic reagents used, a sham operation was conducted
(time 0).

Transmission electron micrographs of liver periportal areasFigure 3
Transmission electron micrographs of liver periportal areas. (a), control, (b-d), after partial hepatectomy; (a) illus-
trates an intact histological relationship between liver sinusoidal endothelium (Ec) and neighboring liver parenchymal cells (Pc). 
Note the patent lumen (L). Inset depicts the intact cytoplasmic processes of endothelial cells bearing fenestrae (arrow). (b) Ten 
minutes after PHx, the surface area of the sinusoidal lumen (L) decreases and severe damage of the endothelial lining in the 
form of gaps is noted (arrow). Blood platelets (arrowhead) adhere to the damaged sinusoidal lumen. Inset shows a detailed 
image of blood platelets. (c) 24 hrs after PHx. Fat droplets (arrow) are evident in the cytoplasm of parenchymal cells. Gaps are 
still present (arrowhead). (d) 72 hrs after PHx reveals endothelial damage (arrowhead) and large fat droplets (arrow) within 
the parenchymal cells (compare with Figure 3c for the difference). Scale bars: 2 µm; Insets: 0.5 µm.
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Immunofluoresence of LECs before and after shear stressFigure 4
Immunofluoresence of LECs before and after shear stress. LECs were reacted with anti VEGFR-1, VEGFR-2 and 
neuropilin-1 before and after exposure to laminar shear forces (10 dynes/cm2/15 minutes). Cy2 conjugated labeled second anti-
bodies were used to visualize the binding of the appropriate antibody. Scale bars: 2 µm.
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Effect of laminar shear stress on the expression and 
distribution of VEGF receptors in liver endothelial cells
Purified LECs grown in culture retained their characteristic
sieve plates (data not shown). Following 4 hrs of incuba-
tion at 37°C and extensive washing, the cells demon-
strated nuclear localization of NFκb suggesting an active
state. To avoid activation, purified LECs were grown in
feeding medium containing 0.25% FCS for 4 hrs, exten-
sively washed and left for 12 hrs before further used.
Under these conditions, more than 94% of the cells exhib-
ited cytoplasmic NFκb which was re-localized to the
nucleus following shear stress (data not shown). LECs dis-
played perinuclear and cytoplasmic localization of

VEGFR-2 and neuropilin 1 (Fig. 4). Following exposure to
shear stress conditions (10 dynes/cm2/15 minutes), a
strong cytoplasmic presence was evident, with a clear ten-
dency to adhere to cytoskeletal components. VEGFR-1 dis-
played nuclear localization, which was unchanged when
shear stress was applied.

Owing to the tendency of VE-cadherin and β-catenin to
react with cytoskeletal proteins under hemodynamic
forces, both were followed in LECs under static conditions
and shear stress. Co-staining analysis of both suggests the
formation of a complex demonstrating a strong tendency
to the membrane (data not shown). Co-staining of VE-

Immunofluoresence of LECs before and after shear stressFigure 5
Immunofluoresence of LECs before and after shear stress. LECs were reacted with anti VE-cadherin and VEGFR-2 
alone and in conjunction before and after exposure to laminar shear forces (10 dynes/cm2/5 minutes). Cy2 and rhodamine 
(TRITC) conjugated labeled second antibodies were used to visualize the binding of the appropriate antibody. Scale bars: 2 µm.
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cadherin and VEGFR-2 (Fig. 5) exhibits similar profile,
pointing to the existence of a possible complex, composed
of the two proteins.

Real time RT-PCR was used to quantify the amount of
mRNA of all receptors before and after shear stress (Fig.
6). The results shown represent pooled RNA isolated from
six animals. It is evident that VEGFR-1, VEGFR-2 and
neuropilin-1 levels increase following shear stress
conditions.

Discussion
Liver regeneration is associated with an increased expres-
sion of a diverse number of genes including immediate
early genes, delayed genes, cell cycle and DNA replication
and mitosis genes [4,5]. Some of these genes increase
within moments after PHx; others increase hours post-
surgery. Regardless of the timeframe, the most obvious
change occurring immediately after PHx is an elevated in
hemodynamic forces imposed on liver cells. Those
changes are the result of an increase in the ratio of blood
flow to liver weight. We documented a 2.5 fold increase in
portal blood flow following 70% PHx. These changes
occur immediately and persist for a number of days.

Endothelial cells lining liver sinusoids are likely to be the
first to sense changes in shear stress. Those cells are unique
as they have no typical basal lamina. Moreover, the cells
are fenestrated allowing free passage of chylomicrons,
lipoproteins, hormones, growth factors and proteases
[16]. The size and density of these fenestrae are affected by

physical factors, such as portal pressure and shear stress, as
well as soluble factors [17-20].

Exploring the effects of shear stress on LECs in vivo is, at
the moment, beyond our reach. Therefore, the present
study examines the effects of increased blood flow follow-
ing PHx on the morphology of LECs. We also follow the
gene expression and protein distribution in LECs exposed
to controlled shear stress in vitro. These forces mimic to
the best of our ability physiological conditions.

Following 70% PHx an immediate ultrastructural change
was noted in the form of fused fenestrae and gaps. Their
number increased significantly in both periportal and
pericentral areas (Fig. 2); yet, expressed differently in both
zones (Table 1). This observation is not surprising in light
of other zonation gradients reported for many liver func-
tions [16,21-23], like fenestration pattern, differential
expression of receptors, hepatocyte metabolism, and
ECM-distribution in the space of Disse. Different high-res-
olution microscopic methods have shown that gaps may
originate from the fusion of several fenestrae [24,25]. In
fact, gaps along the endothelial lining have been noted
when different sample preparation methods were applied
[16,24,26] or be induced by hepatotoxins [27] and high-
perfusion pressure [28]. In accordance with our observa-
tion, Wack et al. [29] reported a gradient behavior in
porosity between periportal and pericentral areas follow-
ing 70% PHx, surprisingly though the gradient described
by those authors persists only at 5 minutes and 24 hrs
post-surgery. In this study, diameter determinations on
gaps were omitted making full comparison difficult. In
our experiments, we could not detect statistical variations
in the size of gaps between the two zonal areas (our
unpublished data). This could be explained by the fact
that the size of gaps varied between 0.3 µm and 2 µm and
mean values with large standard errors were obtained,
excluding therefore valuable statistical analysis.

In our experiments (Fig. 1), maximal values of blood flow
per mg of liver were determined at 24 hrs thereby return-
ing to baseline levels. The inconsistency between the
number of gaps and the ratio of blood flow per mg of liver
tissue, at later time, points may either reflect the time
lapse required for liver tissue to recover or that portal pres-
sure is not the only factor influencing lining endothelial
cells. Consistent with the increased permeability in zone
1 and zone 2 following PHx, accumulation of lipid drop-
lets was evident 10 hrs post surgery, persisting until day
three. At the completion of liver regeneration, lipid con-
tent returns to normal values [18]. Increased lipid uptake
seems to correlate with the change in barrier competence
presented by sinusoidal endothelial cells; however, the
role it has in the regenerating liver is still to be elucidated.

Real time PCR of VEGFR-1, VEGFR-2 and neuropilin-1 before and after exposure of LECs to laminar shear stressFigure 6
Real time PCR of VEGFR-1, VEGFR-2 and neuropilin-
1 before and after exposure of LECs to laminar shear 
stress. Pooled RNA from six different experiments was iso-
lated from LECs subjected to laminar shear stress forces (10 
dynes/cm2/15 minutes) and used to measure mRNA levels of 
the respective receptors.
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Given the increase in blood flow to the liver immediately
after PHx, it is likely that the "damage" caused to LECs is
the result of excessive shear stress to which the cells are
exposed. Interestingly, injections of large volume at a
short time, hydrodynamic injections [30] inflict peripor-
tal and pericentral damage in the form of large (fused)
fenestra (our data to be published).

Shear stress conditions can artificially be applied using the
cone and plate apparatus [31]. We have chosen to limit
our observation to VEGF receptors as those were shown to
be expressed on endothelial cells and their level changed
during liver regeneration. Owing to the fact that neuropi-
lin-1 acts as VEGF co-receptor, we have looked at neuropi-
lin-1 expression following shear stress as well.

LECs exhibited nuclear staining of VEGFR-1. This localiza-
tion was not affected by shear stress conditions. VEGFR-2
and neuropilin-1 present a similar pattern of perinuclear
and faint cytoplasmic presence. Following shear stress
conditions the two receptors seemed to adhere to mem-
brane and cytoskeletal components.

Neuropilin-1 is an isoform specific receptor for VEGF-165
[32], VEGF-E [33], PLGF152 [34] and VEGF-B [35]. Recent
studies have demonstrated a complex dependent signal-
ing involving VEGF-165, neuropilin-1 and VEGFR-2 [36].
Such a complex was shown to exist on the surface of
endothelial cells or between tumor cells and endothelial
cells. Activation of VEGFR-2 has been shown to be
involved in the formation of complexes with various cyto-
plasmic proteins including adherence junction proteins
[37,38]. Furthermore, nuclear translocation of VEGFR-2
along with caveolin-1 and eNOS was reported to occur
following VEGF treatment [39]. Consistent with data
recently presented [15], VEGFR-2 co-stains with VE-cad-
herin following exposure to shear stress. Our preliminary

data point to the possibility of a large complex consisting
of VEGFR-2, neuropilin-1 and the adherence junction
proteins VE-cadherin and β-catenin; nonetheless, addi-
tional experiments need to be done before any conclusion
can be reached. Coinciding with the intense staining of
the above following exposure to shear stress are the
increased mRNA levels of all three as detected by real time
PCR.

Hemodynamic forces play a major role in restructuring
blood vessels by modulating endothelial structure and
functions such as increased permeability to macromole-
cules or damage to endothelial cells [40]. Therefore, a key
question in liver regeneration is how these forces imposed
during the early steps following resection are translated
into gene expression, DNA synthesis and cell prolifera-
tion. Shear forces dependent signaling is presumably
based on cytoskeletal components, which act as a
mechano-transducer. Indeed, tyrosine phosphorylation
of the endothelial cell adhesion molecule PECAM-1 is
observed in response to flow [40].

Conclusions
In summary, the present study documents an increase in
blood flow to remnant liver following PHx. This change is
associated with an elevated number of endothelial cell
gaps in both periportal and pericentral areas. Shear stress
in vitro induces in endothelial cells membrane transloca-
tion of VEGFR-2 and neuropilin-1. It is conceivable that
under shear stress conditions a complex consisting of
VEGFR-2/neuropilin-1 and adhesion molecules forms.
Such a complex may well be formed following the ele-
vated blood flow associated with partial hepatectomy,
playing a role in the early signals leading to liver
regeneration.

Table 1: Number of gaps along the sinusoidal endothelial lining following partial hepatectomy

Time Periportal (zone 1) n gaps / 10 µm2 Pericentral (zone 3) n gaps / 10 µm2

Control 0.10 (0.14) 0.06 (0.12)
10 min 1.57 (0.74)* 0.33 (0.13)§

24 hrs 1.47 (0.66)* 0.47 (0.32)§

72 hrs 2.18 (0.91)* 0.84 (0.65)§

168 hrs 2.28 (0.88)* 0.79 (0.55)§

240 hrs 0.09 (0.05) 0.07 (0.05)

Morphometric analysis evaluating the number of gaps per area along the sinusoidal endothelial lining, studied by SEM. Results are expressed as mean 
(standard deviation) and significance was determined with the Mann Whitney two-sided U-test. The symbols * and §denote significant differences 
between control and respective time points (p ≤ 0.05). Significant differences (p ≤ 0.05) between the number of gaps in the periportal and 
pericentral zones were also noted at all time points following partial hepatectomy except day 10 and control. For every group, n = 3.
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Methods
Animals and surgical procedures
Male Sprague-Dawley rats weighing 300–325 g were used.
PHx was performed on 5 animals under light anesthesia
by removing the right lateral and median lobes[41]. At
different time intervals animals were exsanguinated, the
liver removed and tissue samples were prepared for
immunostaining and RNA extraction. Animals undergo-
ing PHx and analyzed by electron microscopy were anes-
thetized first by Ketamine and Xylasine followed by
intubation with isoflurane 1.5%. Animals received
humane care according to the criteria outlined in the
"Guide for the care and use of laboratory animals" NIH
publication.

Monitoring liver regeneration
Liver regeneration was monitored using liver mass and
PCNA. Liver mass was calculated by weighing the
removed lobes following surgery and the regenerating
liver at the indicated time point. For PCNA immunostain-
ing, specimens were fixed in paraformaldehyde,
embedded in paraffin and sliced. Sections were incubated
with anti-PCNA followed by biotin conjugated secondary
antibody. The binding of anti-PCNA was monitored using
avidin-peroxidase and amino ethyl carbazol as a substrate
(Zymed, San Francisco, CA).

Blood flow
Five rats were anesthetized and placed on a temperature-
controlled table. Following tracheotomy and saline infu-
sion an ultrasound sensor was fixed to the portal vein.
Portal blood flow was monitored by ultrasound flowme-
try and automatically recorded (Ultrasonic System Inc.
model T206, Ithaca, N.Y).

Preparation of liver tissue for electron microscopy
Tissue samples were prepared according to standard pro-
tocols [16]. Briefly, samples were cut into 1 mm3 blocks in
1.5% glutaraldehyde, in 0.12 M sodium cacodylate buffer.
Following fixation, blocks were submerged in 1%
osmium tetroxide, dehydrated in ethanol and embedded
in Epon. Semithin (1 µm) sections were cut and stained
with 1% toluidine blue solution. For detailed EM-study,
50–80 nm ultrathin sections were stained first with uranyl
acetate and then with lead citrate. For SEM, dehydrated
blocks were dried with hexamethyldisilazane and subse-
quently broken in liquid nitrogen, mounted on stubs and
sputter coated with a thin layer of 20 nm gold [24]. Mor-
phometric analysis was performed on randomly acquired
digitized SEM images at magnifications ×5,000 or
×20,000, as previously described [42]. The UTHSCSA
Image Tool 2.0 software was used to determine the
number of liver sinusoidal endothelial gaps. Gaps, an
empty area, a hole with a maximum diameter of ≤ 0.3 µm
and ≤ 2 µm, were discriminated from fenestrae based on

morphology and size [16,24,27]. For each experimental
variable, 10 images in the periportal and pericentral zones
(regions up to 100 µm in diameter) were randomly
selected and captured at both magnifications. Three ani-
mals were tested at each time point. All experiments were
repeated three times and data were expressed as mean
(plus standard deviation of the mean).

Isolation of liver endothelial cells (LECs)
LECs were isolated using a modification of the procedure
described by Braet et al. [42] and Smedsrod and Pertoft
[43]. Briefly, the liver was washed and perfused through
the portal vein with balanced salt solution and 0.05% col-
lagenase A. Following excision and mincing, the cells were
filtered and centrifuged. Enriched liver sinusoidal cells
were then layered on a two-step percoll gradient (25/
50%) and centrifuged for 20 minutes at 900 g. The inter-
mediate, 25/50% zone is enriched with LECs and Kupffer
cells. Following selective adherence of Kupffer cells, LECs
were spread on collagen coated plastic slides for 4 hrs and
extensively washed. Based on EM such cultures are esti-
mated to be 95% pure.

In vitro shear stress
LECs grown on plastic collagen-coated slides were sub-
jected to shear stress forces produced between a stationary
base plate and a rotating cone [31]. High-level shear stress
forces of 10 dynes/cm2 were enforced for 5 or 15 minutes
at which time the cells were washed and either used for
immunofluorescence or RNA extraction.

Immunofluorescence
Cells were fixed in 2% paraformaldehyde followed by 1%
triton paraformaldehyde solution. The slides were then
immersed in blocking solution and stained with either
anti VEGFR-1, VEGFR-2, neuropilin-1, VE-cadherin, β-cat-
enin or NFκb. Cy2 or rhodamine (TRITC) conjugated sec-
ondary antibodies were used.

RNA extraction
RNA was extracted from LECs by the RNAeasy kit (Qiagen,
Chatsworth, CA) according to manufacturer's protocol
and treated with DNase.

Real time RT-PCR
RNA samples were reversed transcribed and amplified
using the QuantiTect SYBR Green RT-PCR kit (Qiagen)
and appropriate primers at concentrations of 90 nM to
125 nM. The one-step RT-PCR was carried out at a Rotor-
Gene 2000 real time cycler (Corbett Research, Australia).
The thermal cycling conditions included 95°C for 15' fol-
lowed by 45 cycles of amplification at 94°C 20", 60°C
15–30", 72°C 15". Samples were monitored after elonga-
tion by SYBR Green dye binding to the amplified double
stranded DNA at 72°C–78°C. All samples were amplified
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in duplicates and each experiment was repeated twice.
Quantitation was carried out using a standard curve. The
Rotor-Gene analysis software was used for the calculation
of the amount of each RNA sample.

Statistical analysis
Significance was determined with the Mann Whitney two-
sided U-test. Differences were considered significant when
when p ≤ 0.05.
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