
BioMed CentralComparative Hepatology

ss
Open AcceResearch
Low NO bioavailability in CCl4 cirrhotic rat livers might result from 
low NO synthesis combined with decreased superoxide dismutase 
activity allowing superoxide-mediated NO breakdown: A 
comparison of two portal hypertensive rat models with healthy 
controls
Marc Van de Casteele*1, Jos F van Pelt1, Frederik Nevens1, Johan Fevery1 and 
Jürg Reichen2

Address: 1Department of Hepatology, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, B-3000 Leuven, Belgium and 2Institute of 
Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH-3010 Berne, Switzerland

Email: Marc Van de Casteele* - marc.vandecasteele@uz.kuleuven.ac.be; Jos F van Pelt - jos.vanpelt@med.kuleuven.ac.be; 
Frederik Nevens - frederik.nevens@uz.kuleuven.ac.be; Johan Fevery - johan.fevery@uz.kuleuven.ac.be; 
Jürg Reichen - juerg.reichen@ikp.unibe.ch

* Corresponding author    

Abstract
Background: In cirrhotic livers, the balance of vasoactive substances is in favour of
vasoconstrictors with relatively insufficient nitric oxide. Endothelial dysfunction has been
documented in cirrhotic rat livers leading to a lower activity of endothelial nitric oxide synthase
but this might not be sufficient to explain the low nitric oxide presence. We compared the amount
of all nitric oxide synthase isoforms and other factors that influence nitric oxide bioavailability in
livers of two portal hypertensive rat models: prehepatic portal hypertension and carbon
tetrachloride induced cirrhosis, in comparison with healthy controls.

Results: Endothelial nitric oxide synthase was the solely detected isoform by Western blotting in
all livers. In cirrhotic livers, the amount of endothelial nitric oxide synthase protein was lower than
in healthy controls, although an overlap existed. Levels of caveolin-1 messenger RNA were within
the normal range but endothelin-1 messenger RNA levels were significantly higher in cirrhotic
livers (p < 0.05). A markedly lower superoxide dismutase activity was observed in cirrhotic livers
as compared to healthy controls (p < 0.05).

Conclusions: In contrast to prehepatic portal hypertension, cirrhotic livers had decreased
endothelial nitric oxide synthase protein and enhanced endothelin-1 messenger RNA amount. We
hypothesise that a vasodilator/vasoconstrictor imbalance may be further aggravated by the reduced
activity of superoxide dismutase. Decreased activity allows enhanced superoxide action, which may
lead to breakdown of nitric oxide in liver sinusoids.

Background
The balance of vasoactive substances in cirrhotic livers is

in favour of vasoconstrictors [1–3]. This contrasts with
splanchnic and systemic vasodilatation characteristically
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seen in this condition [1,2]. Nitric oxide (NO), prostacyc-
lin and carbon monoxide are known intrahepatic vasodi-
lating substances, whereas endothelin-1, superoxide (O2

-

), angiotensin-II, epinephrine and others act as vasocon-
stricting agents [1–6]. NO is produced by 3 different nitric
oxide synthase (NOS) isoforms: neuronal NOS (nNOS),
inducible NOS (iNOS) and endothelial NOS (eNOS) [1].
The latter is in a normal liver clearly present in endothelial
cells of portal venules, portal arterioles and central
venules, as well as in sinusoidal endothelial cells [7,8].
Other liver cell types such as hepatic stellate [9,10],
Kupffer cells [9] or hepatocytes [7,9] do not express eNOS.
A diminished hepatic activity of eNOS by about 30–50 %
was documented in carbon tetrachloride (CCl4) induced
cirrhosis [7–9,11], in biliary fibrosis of the rat [9,12] and
in advanced human cirrhosis [13]. This led to the concept
that decreased hepatic NO bioavailability in case of cir-
rhosis is due to decreased NO synthesis [7,9,11–13]. The
contribution of nNOS and iNOS to portal hypertension is
not well studied [3]. In the present study, we wanted to
know which NOS isoform was the most abundant in rat
livers in normal conditions and in two different models of
portal hypertension: prehepatic portal hypertension and
CCl4 cirrhosis.

Furthermore, the reason of decreased hepatic NO bioa-
vailability in case of cirrhosis is not yet elucidated. One of
the inhibitors of eNOS catalytic activity is caveolin-1 [14],
whereas endothelin-1 counteracts the vasodilating effect
of NO via endothelin-A receptors [1,3,5]. Finally, NO can
be scavenged by O2

- [1,15] and superoxide dismutase
(SOD) catalyses O2

- breakdown [15,16]. Because SOD
and NO compete for O2

-, SOD can be regarded as a "NO
sparing" enzyme [17,18] (Fig. 1). This finding is relevant
not only in the context of oxidative stress in cirrhotic liv-
ers. It also concerns eNOS itself, because eNOS can syn-
thesise both NO and O2

- [18,19] (Fig. 1). Hence, a
balanced hepatic production of NO and O2

- has to exist
under physiological circumstances [19]. In the present
study, we measured hepatic levels of caveolin-1 mRNA,
endothelin-1 mRNA and SOD activity to find whether dif-
ferences exist between healthy controls and two portal hy-
pertensive models.

Results
Western blots of eNOS, iNOS and nNOS
The eNOS was the only NOS isoform detected in livers of
all groups. The amount of eNOS protein in liver homoge-
nates was similar in normal and PPVL rats (Fig. 2A), but
was lower in CCl4 cirrhotic livers (Fig. 2A), although some
overlap existed with healthy controls. This is in accord-
ance with the variable severity of the cirrhosis in this mod-
el. The iNOS protein content was below the limit of
detection in livers of healthy controls and the two groups
with portal hypertension (Fig. 2B). The nNOS protein was

not detected in any liver homogenate (Fig. 2C). In West-
ern blots of iNOS and nNOS but not in those of eNOS,
some atypical bands of smaller proteins were observed
(data not shown).

Hepatic mRNA levels of caveolin-1 and endothelin-1
A large variation of caveolin-1 mRNA values was present
in all groups. Levels in the two portal hypertensive groups
were not significantly different from healthy control val-
ues (Table 2).

Levels of endothelin-1 mRNA in the PPVL group were
comparable to those of healthy control rats (Table 2), but
values of CCl4 cirrhotic livers were significantly and ap-
proximately 40-fold higher (p < 0.05 vs controls) (Table
2).

Hepatic SOD activity
SOD activity in liver homogenates of healthy controls was
15 (7) U/mg protein and it was 14 (3) U/mg protein in
PPVL rats (Table 2). In CCl4 cirrhotic livers, SOD activity
was significantly reduced to 10 (3) U/mg protein (p < 0.05
vs normal livers) (Table 2).

Hepatic malondialdehyde levels
Malondialdehyde, a marker of lipid peroxidation, ranged
in normal livers from 2 to 20 pmol/mg liver (median 15)
and similar values were measured in PPVL rats. In CCl4
cirrhotic livers, malondialdehyde levels were significantly
elevated, with a median of 26 pmol/mg liver (range 6 to
130) (p < 0.05 vs normal livers) (Table 2).

Discussion
Endothelial cells are the only liver cell type that expresses
eNOS [7–10] in normal and pathological conditions. In
cirrhotic livers, endothelial dysfunction results in reduced
eNOS activity in rat [7,9,11,12] and man [13]. A de-
creased bioavailability of the vasodilator NO favours va-
soconstriction of liver sinusoids, especially in the presence
of enhanced endothelin-1, a strong vasoconstrictor [1–
3],[20–22]. NO can be produced by 3 NOS isoforms [18].
Furthermore, NO might be consumed by reactive oxygen
species before it exerts vasorelaxation, as has been docu-
mented in extrahepatic vessels [17–19,23,24] (Fig. 1). In
the present study, eNOS protein was the solely detected
NOS isoform in liver of normal rats and of PPVL and CCl4
cirrhotic rats (Fig. 2). The eNOS is derived from endothe-
lial cells in various vascular structures inside the liver
[7,9,11]. In our search for other NOS isoforms, we could
not demonstrate hepatic iNOS in any of the 3 groups (Fig.
2B), which is in agreement with other studies in normal
[25,26] and CCl4 cirrhotic livers [7,9,12]. Following LPS
injection [27,28], hepatic iNOS could be detected (Fig.
2B). It can thus be concluded that iNOS is not contribut-
ing to portal hypertension in these two rat models. Al-
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though the nNOS protein content fell below the detection
limit of Western blotting in all our rats, nNOS immunos-
taining by others showed a dense expression around the
hepatic artery and bile duct branches in the hilum of rat
liver [29]. With progressive ramifications of the hepatic ar-
tery, the number of nNOS positive fibres decreases [29].
This could render nNOS undetectable (Fig. 2C) or weak
[28] in parenchyma at a distance of the hilum. The issue
that unknown small-size proteins sometimes stain with
commercially available NOS antibodies (not shown in
Figs. 2B, 2C) is discussed in detail in reference [30].

The portal vein resistance in the PPVL rat model results
from the mechanical stenosis laid around the extrahepatic
part of the portal vein [31]. In PPVL rats, we could not
document any change in hepatic eNOS protein, endothe-

lin-1 mRNA, caveolin-1 mRNA or SOD activity. Our find-
ings suggest that the (atrophic) parenchyma in PPVL rats
is not altering portal vein resistance importantly. In portal
vein tissue below this stenosis, however, increased en-
dothelin-1 levels have been documented and administra-
tion of endothelin-A receptor antagonists lowered the
pressure in the prestenotic portal vein [32].

In the CCl4 cirrhotic model, eNOS activity is subnormal as
reported by different groups [7–9,11]. This could be due
to several causes. In our CCl4 cirrhotic rats, the amount of
eNOS protein itself was subnormal (Fig. 2A), which we
confirmed by immunohistochemistry [8]. Others did not
find such a difference [7] but this might be related to dif-
ferences in rat strains, degree of cirrhotic process or of the
applied techniques, e.g., since they used an immunopre-

Figure 1
Proposed scheme of nitric oxide (NO) and superoxide signaling. Adapted from references [18], [24] and [34]. NO is a potent 
vasodilator acting through activation of soluble guanylyl cyclase in vasoactive effector cells. Superoxide is able to react with NO 
to form reactive nitrogen species, which could not have vasodilatory effects. Superoxide dismutase competes with NO to 
react with superoxide. Superoxide dismutase activity leads to breakdown of superoxide and may be regarded as a "NO sparing 
enzyme". Glutathione and NO may lead to possible storage of NO-derivatives.
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Figure 2
Western blots of NOS isoforms. Liver homogenates of rats were used in Western blots; see Methods section. Normal rats 
(NL) were compared with prehepatic portal hypertensive rats, achieved by partial portal vein ligation (PPVL) and rats with car-
bon tetrachloride/phenobarbital induced (CCl4) cirrhosis. (A) Western blot of eNOS, representative of eight blots. 
Lane 1, marked with +: Human endothelial cells were used as positive control. Lanes 2–3: two different NL livers. Lanes 4–5: 
two different PPVL livers. Lanes 6–7: two different CCl4 cirrhotic livers. Prestained markers indicated the presence of 203, 
120, 86, 52 kilodalton (kD) sized proteins. (B) Western blot of iNOS, representative of two blots. Lanes 1–2: two dif-
ferent NL livers. Lanes 3–4: two different PPVL livers. Lanes 5–6: two different CCl4 cirrhotic livers. Lane 7, marked with +: 
liver from a rat previously treated with lipopolysaccharide was used as positive control for iNOS (see Methods). Prestained 
markers indicated the presence of 130 and 86 kilodalton (kD) sized proteins. (C) Western blot of nNOS, representative 
of two blots. Lanes 1–2: two different NL livers. Lanes 3–4: two different PPVL livers. Lanes 5–6: two different CCl4 cirrhotic 
livers. Lane 7, marked with +: rat brain homogenate was used as positive control for nNOS (see Methods). Prestained markers 
indicated the presence of 130 and 86 kilodalton (kD) sized proteins.
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cipitation step before protein blotting [7]. When eNOS
spots on Western blots are very dense, densities do not
correlate anymore with loaded protein amounts (own
personal observation).

More important than eNOS protein amounts, is the un-
derstanding of eNOS enzymatic activity [18]. The eNOS
activity is inhibited by protein-protein interaction of cave-
olin-1 with eNOS in hepatic [7,12] and extrahepatic ves-
sels [14,18]. Others cast doubt on the very localisation of
caveolin-1 in hepatic endothelial cells [33]. Caveolin-1 ex-
pression has been observed in hepatocytes, Kupffer cells
and stellate cells as well [33]. We admit that in the present
study we could not clarify the cellular localisation of cave-
olin-1 nor caveolin-1/eNOS interaction with mRNA
measurements. We documented a small but not signifi-
cant increase of caveolin-1 mRNA in CCl4 cirrhotic livers
(Table 2). If caveolin-1/eNOS interaction takes place in
liver endothelial cells, our findings show that a clear-cut
upregulation of caveolin-1 (as seen for endothelin-1 in
Table 2) was not the case in CCl4 cirrhotic liver tissue. The
significant increase of endothelin-1 mRNA in this model
(Table 2) is compatible with reports from other groups
[20,21], where stellate cells [34] and hepatocytes [21]
were identified as important endothelin-1 synthesising
cells. An increased endothelin-1 synthesis together with
changes in endothelin-A and B receptor density may be
implicated in haemodynamic deteriorations [5,34]. A
(relatively) insufficient NO production will thus allow va-
soconstrictor effects.

SOD activity enhances NO bioavailability by removing
O2

-, which otherwise could rapidly convert NO into per-
oxynitrite and other reactive nitrogen species [17–
20,23,24,35], as is given schematically in Fig 1. The ob-
served decrease of SOD activity might allow higher intra-
hepatic O2

- action. In the CCl4 cirrhotic rat liver, we
hypothesise that enhanced intrahepatic O2

- will further
reduce the already low NO and this will further amplify
vasoconstrictor supremacy [24]. The observation that ex-
ogenously administered superoxide doubled portal pres-
sure in the isolated perfused liver of a normal rat [6]
supports this hypothesis. The antioxidative defence en-
zyme SOD is present in different isoforms in all liver cell
types [15]. Admittedly, we did not study SOD activity in
particular liver cell types or in the vascular lumen (the lat-
ter regards the extracellular SOD isoform). SOD can easily
interfere with NO and O2

- released by endothelial cells
[29,36]. It is also known that activities of various SOD iso-
forms cannot easily be discriminated in rat liver tissue
[36,37].

Presumed vasoconstrictive properties of reactive oxygen
species may have consequences in chronic liver diseases
with regard to the study of superoxide dismutase mimetics

as treatment for portal hypertension. A recent report
showed that gene transfer of the extracellular SOD iso-
form was beneficial in rats with endothelial dysfunction
related to arterial hypertension [38].

Conclusions
In conclusion, we found that eNOS was the major if not
the sole NOS isoform in livers of normal, PPVL and CCl4
cirrhotic rats. In contrast to prehepatic portal hyperten-
sion, CCl4 cirrhotic livers had decreased eNOS protein
and enhanced mRNA levels of endothelin-1 but not of ca-
veolin-1. This vasodilator/vasoconstrictor imbalance
might be further aggravated by a reduced SOD activity,
which could lead to enhanced superoxide-mediated inac-
tivation of NO in liver sinusoids. The resulting low NO is
unable to counteract the enhanced endothelin-1 and this
results in a strong vasoconstricting effect in CCl4 cirrhotic
livers.

Methods
Animal models
Male Sprague-Dawley rats (Charles River Wiga, Germany)
were used either as healthy controls (n = 14), for prehe-
patic portal hypertension (n = 6) or for CCl4 induced cir-
rhosis (n = 11) (Table 1). In later experiments, male
inbred Wistar rats (Animal House Leuven, Belgium) were
used similarly as healthy controls (n = 9), for prehepatic
portal hypertension (n = 5) or CCl4 induced cirrhosis (n =
9) (Table 2). Prehepatic portal hypertension was achieved
by partial portal vein ligation (PPVL) [31] and haemody-
namic measurements were carried out 2 weeks later. CCl4
induced cirrhosis was obtained by 12 weekly inhalations
(Table 1) or ingestion (Table 2) of the hepatotoxin CCl4,
together with phenobarbital 350 mg/l in the drinking wa-
ter [39]. Rats were studied 2 weeks after the last CCl4 ad-
ministration. Under pentobarbital anaesthesia (50 mg/kg
intraperitoneally), portal venous pressure was measured
in all rats, the liver was removed and 2 g of liver tissue
were homogenised in 8 ml ice-cold buffer I consisting of
250 mM sucrose, 5 mM MgCl2.6H2O and 50 mM Tris/
HCl pH 7.4. Homogenates were divided into aliquots and
stored at -20°C until further processing. A small slice of
liver tissue was put in guanidinium buffer on ice for 30
minutes, snap frozen in liquid nitrogen and stored at -
80°C until further processing. Additionally, a small liver
sample was fixed and used for haematoxylin-eosin stained
paraffin-embedded sections; only those CCl4 rats with mi-
cronodular cirrhosis were maintained for analysis.

Western blotting for nNOS, iNOS and eNOS
SDS/PAGE 7.5 % gel electrophoresis was run with diluted
homogenates containing 30 µg of protein and with mark-
er proteins (Sigma, St. Louis, USA) including a 120 kD
protein, E. coli β-galactosidase. All protein concentrations
were measured using the Bradford method (Bio-Rad Labs,
Page 5 of 8
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Hemel Hempstead, UK) and with bovine serum albumin
as standards. As positive controls were taken: a lysate of
human aorta endothelial cells (Transduction Labs, Lex-
ington, USA) for eNOS; a homogenate of rat brains for
nNOS; and a liver of a rat given LPS 800 µg/kg IV (Sigma,
St. Louis, USA) 6 hours before harvesting for iNOS. Sam-
ples of both portal hypertensive conditions and healthy
controls were run simultaneously on the same gel. Two
liver homogenate samples per liver were run. After blot-
ting on a nitrocellulose membrane, blots were blocked
overnight at 4°C. Blots were incubated for 2 hours with a
mouse monoclonal antibody respectively against eNOS,
nNOS or iNOS (Transduction Laboratories, Lexington,
USA), dissolved at 1:1000 in buffer II (10 mM Tris-HCl
pH 7.6, 0.1 M NaCl, Tween-20 at 0.1 %). Subsequently,
blots were incubated with sheep anti-mouse IgG, horse-
radish peroxidase-labelled (Amersham, Bucks, UK), at
1:3000 diluted in 5 % skimmed milk powder blocking so-
lution for one hour. After washing, detection reagents
(ECL Western blotting system, Amersham, Bucks, UK)
were added and blots were shortly exposed to an autora-
diography film (Nen Life Science Products, Boston, USA)
(Figs. 2-4) [8]. To check for adequate protein loading and

blotting, all blots were stained afterwards with Ponceau S
red dye (Sigma, St. Louis, USA).

Hepatic mRNA levels of caveolin-1 and endothelin-1 with 
RT-PCR
Hepatic caveolin-1 or endothelin-1 mRNA levels were as-
sessed semi-quantitatively with RT-PCR, using serial dilu-
tions of cDNA as a measure for the amount of specific
mRNA in the different livers. Briefly, total RNA was ex-
tracted in a single step procedure [40]. The precipitated
RNA was dissolved in 20-µl DEPC-treated water and the
concentration was measured using the Ribogreen RNA
quantitation kit (Molecular Probes, Eugene, USA), with ri-
bosomal RNA as standard. One µg of this RNA was used
for cDNA synthesis with M-MLV reverse transcriptase
(GibcoBRL, Life Technologies, Merelbeke, Belgium) and
random primers (Amersham Pharmacia Biotech, Little
Chalfont, UK) in a volume of 20 µl, 1 hour at 37°C. The
reaction was stopped by heating in boiling water for 1
min.

The PCR primer set used for the detection of rat caveolin-
1 mRNA (access number Z 46614) was:

Table 1: Livers used for NOS Western blots. Characteristics of normal and two types of portal hypertensive rats whose livers were used 
for the detection of NOS isoforms by Western blot in Fig. 2. Data are expressed as mean (SD).

Normal PPVL CCl4 cirrhosis
(n = 14) (n = 6) (n = 11)

Body weight (g) 478 (82) 360 (27)** 520 (70)
Liver weight (g) 15.4 (3.4) 10.3 (2.0)** 15.8 (6.0)
PVP (mm Hg) 8.1 (1.9) 11.3 (1.7)* 14.5 (2.7)**

* p < 0.05 and ** p < 0.01 as compared to normal group. PPVL: partial portal vein ligation (= model of prehepatic portal hypertension). PVP: portal 
venous pressure. CCl4 cirrhosis: carbon tetrachloride induced cirrhosis.

Table 2: eNOS related parameters in rat livers: caveolin-1, endothelin-1, as well as SOD total activity and malondialdehyde levels.

Normal PPVL CCl4 cirrhosis
(n = 9) (n = 5) (n = 9)

Body weight (g) 272 (10) 280 (13) 355 (58)*
Liver weight (g) 10.4 (0.8) 9.7 (0.9) 14.8 (5.6)
Portal venous pressure (mm Hg) 5.0 (1.1) 9.9 (1.5)* 11.0 (2.9)*
cDNA dilutions still detecting 
caveolin-1 by RT-PCR

128 [4–512] 32 [8–256] 384 [128–2048]

cDNA dilutions still detecting 
endothelin-1 by RT-PCR

8 [0–64] 13 [2–144] 310 [16–512]*

SOD total activity (U/mg protein) 15 (7) 14 (3) 10 (3)*
Malondialdehyde (pmol/mg liver) 15 [2–20] 8 [4–16] 26 [6–130]*

* p < 0.05 as compared with normal group. PPVL: partial portal vein ligation (= model of prehepatic portal hypertension). CCl4 cirrhosis: carbon 
tetrachloride induced cirrhosis. Livers of normal and two types of portal hypertensive rats used for the study of eNOS related parameters: caveo-
lin-1 and endothelin-1 as well as superoxide dismutase (SOD) activity and malondialdehyde levels. For cDNA dilutions see Methods. Data are 
expressed as mean (SD) for normally distributed data or median [range] for not normally distributed data.
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P18: 5'-CCG.GGA.ACA.GGG.CAA.CAT.CTA.CAA.GCC-3'
positions 82–108;

M28: 5'-GCC.GTC.RAA.ACT.GTG.TGT.CCC.TTC.TGG-3'
positions 251–277, resulting in a fragment of 195 bp.
Note that R stands for [A,G].

The PCR primer set used for the detection of rat endothe-
lin-1 mRNA (preproendothelin-1) (access number NM
612548) was:

P1: 5'-CAG.GTC.CAA.GCG.TTG.CTC.CTG.CTC.CTC.C-3'
positions 328–355;

M2: 5'-
CAC.CAC.GGG.GCT.CTG.TAG.TCA.ATG.TGC.TCG-3'
positions 782–811, resulting in a fragment of 483 bp.

PCR determinations were performed on a dilution series
of each sample. The first sample contained cDNA equiva-
lent to 0.25 µg total RNA; each following sample was di-
luted to half the concentration of the previous one. The
PCR mixture contained 5 µl of cDNA solution, 6.25 pmol
of each primer, 0.2 µM of each dNTP, 1 U of Taq DNA
polymerase adjusted by PCR buffer (10 mM Tris-HCl pH
8.3, 50 mM KCl, 2.5 mM MgCl2 and 0.01 % gelatin) in a
final volume of 50 µl. Samples were overlaid with 100 µl
mineral oil. PCR conditions were identical for both prim-
er sets: denaturing 5 min at 95°C; 45 cycles of 1 min at
95°C, 45 sec at 58°C and 45 sec at 72°C; and a final step
for 5 min at 72°C, after which the samples were stored at
4°C. Samples were analysed on a 2 % agarose gel. Sam-
ples of both portal hypertensive conditions and healthy
controls were separated simultaneously on the same gel.
The majority of the samples were amplified and analysed
at least in duplicate. Results are given as the highest dilu-
tion that gave a positive signal on the gel (Table 2).

Hepatic superoxide dismutase (SOD) activity
SOD activity in liver homogenates in buffer I was diluted
400 times with buffer I and measured with a RANSOD kit
(Randox Laboratories, Crumlin, UK) according to the
manufacturer's instructions. In brief, xanthine oxidase
generates O2

-, which reacts with a chromogen to form a
red formazan dye that is photometrically quantified. One
SOD unit was defined as 55 % inhibition of dye forma-
tion. SOD activity was expressed as U/mg protein (Table
2).

Hepatic malondialdehyde levels
Determination of malondialdehyde was performed as
published before [41]. Briefly, liver homogenates in buffer
I were run together with 1,1,3,3-tetraethoxypropane as
standard and buffer I as blanks. After the addition of phos-
phoric acid and thiobarbituric acid, samples were heated

at 80°C for 15 min. Longer and more intense heating cre-
ated too much interference of sucrose [42] (own personal
observation). Ice cooled reaction products were further
separated by high performance liquid chromatography-
reverse phase technique [41]. The latter step is necessary
to eliminate other substances that had reacted with thio-
barbituric acid [43]. Results are expressed as pmol
malondialdehyde/mg liver wet weight (Table 2).

Statistical analysis
Data are given as mean (SD) or as median [range] for re-
spectively normally and non-normally distributed data.
We made comparisons of the 3 groups (normal, PPVL,
CCl4 cirrhosis) by one-way-analysis of variance in case of
normally distributed data with equal variances. If other
cases, we used analysis of variance-on-ranks, where the
sum of ranks of each group was compared. When signifi-
cant differences between groups means were found, the
Scheffe's post hoc test was performed to identify the
groups. Significance level was always taken at α = 0.05.
Statistical analyses were carried out with Sigma STAT 2.0
(Jandel Corporation, San Rafael, USA).
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