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Abstract

Background: Proliferation of oval cells, the bipotent precursor cells of the liver, requires impeded proliferation and
loss of hepatocytes as well as a specific micro-environment, provided by adjacent sinusoidal cells of liver. Despite
their immense importance for triggering the oval cell response, cells of hepatic sinusoids are rarely investigated. To
elucidate the response of sinusoidal liver cells we have employed a choline-deficient, ethionine-supplemented
(CDE) diet, a common method for inducing an oval cell response in rodent liver. We have utilised selected
expression markers commonly used in the past for phenotypic discrimination of oval cells and sinusoidal cells:
cytokeratin, E-cadherin and M2-pyruvate kinase for oval cells; and glial fibrillary acidic protein (GFAP) was used for
hepatic stellate cells (HSCs).

Results: CDE diet leads to an activation of all cells of the hepatic sinusoid in the mouse liver. Beside oval cells, also
HSCs and Kupffer cells proliferate. The entire fraction of proliferating cells in mouse liver as well as endothelial cells
and cholangiocytes express M2-pyruvate kinase. Concomitantly, GFAP, long considered a unique marker of
quiescent HSCs was upregulated in activated HSCs and expressed also in cholangiocytes and oval cells.

Conclusions: Our results point to an important role of all types of sinusoidal cells in regeneration from CDE
induced liver damage and call for utmost caution in using traditional marker for identifying specific cell types. Thus,
M2-pyruvate kinase should no longer be used for estimating the oval cell response in mouse liver. CDE diet leads
to activation of GFAP positive HSCs in the pericentral zone of liver lobulus. In the periportal zone the detection of

diet conditions.

GFAP in biliary cells and oval cells, calls other cell types as progenitors of hepatocytes into question under CDE

Background

Oval cell reaction occurs under pathological conditions
in human liver and in early stages of experimental hepa-
tocarcinogenesis protocols in rodents provided hepato-
cyte proliferation is impaired. A frequently used
protocol applies ethionine, the ethyl analogon of
methionine, together with a choline deficient diet (CDE)
[1]. During CDE diet many metabolic changes in hepa-
tocytes take place leading to deposition of lipids in
hepatocytes and massive lethal deterioration of this cell
type. Surviving hepatocytes are no longer able to prolif-
erate and to repopulate the damaged tissue. Instead,
oval cells, the bipotential progenitor cells of liver that
are resistant against the destroying mechanisms, are
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activated and enrich. For proliferation they require a
typical microenvironment which is provided by cells of
the hepatic sinusoids closely adjacent to them. The pivo-
tal role of an intrahepatic inflammatory response in this
process, and the recruitment of Kupffer cells and other
intrahepatic leukocytes were recently described in CDE
treated mice [2,3]. In addition to macrophages and
monocytes other cells of hepatic sinusoids also contri-
bute to this environment as it was recently shown for
myofibroblasts [4]. Changes concerning sinusoidal cells
under CDE conditions are rarely investigated until now.
An increase of the non-hepatocytic pyruvate kinase was
demonstrated, however, in livers of CDE treated mice
(2,5,6].

In adult liver, different isoenzymes of pruvate kinase
(Pk) exist. The L-isoenzyme is exclusively expressed in
hepatocytes (L-Pk) [7,8], whereas the M-isoenzyme
(M-Pk) occurs in sinusoidal cells. From M-Pk two splice
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variants, the M1-Pk and M2-Pk, were detected. M2-Pk,
known as the embryonic or tumor type, also belongs to
the normal enzymatic configuration of cholangiocytes,
hepatic stellate cells (HSCs) [9] and Kupffer cells [10] of
rat liver. A switch from M1- to M2-type was demon-
strated in rapidly growing cells [11], and M2-type was
found to be expressed in oval cells [12,13]. Although
M2-Pk was detected in most sinusoidal cell types in rat
liver, it has gained the status of an oval cell marker par-
ticularly in mouse [5,6,14,15]. However, the distribution
of Pk isoenzymes among mouse sinusoidal cells has not
been explicitly studied yet.

In the present study, we dissected the response of
sinusoidal cells in the liver of CDE treated mice. We
verified that CDE diet provokes enrichment and/or acti-
vation of all sinusoidal cells, and show that M2-Pk is
expressed in nearly all cells of hepatic sinusoids in
mouse liver except of smooth muscle cells and myofi-
broblasts. Thus, M-Pk cannot be used as a reliable mar-
ker of oval cells. Additionally, we found an overlapping
expression of glial fibrillary acidic protein (GFAP) in
epithelial (cholangiocytes, oval cells) and mesenchymal
(HSCs) cells of mouse liver, rendering this marker use-
less for unequivocally tracing precursor cell lineages.

Results

M-Pk signal is not an oval cell specific response

We used the CDE diet protocol to induce an oval cell
response and proved the hypothesis that M-Pk is conve-
nient to scale this oval cell reaction. To examine the
effectiveness of our diet conditions, we determined
E-cadherin levels, previously found strongly elevated
during CDE diet [4] and also indicating a strong oval
cell response [16]. As shown in additional File 1, clear-
cut elevated E-cadherin levels confirm the applied CDE
procedure. Because a non-ambiguous oval cell marker is
not available we displayed oval cells by both an anti-pan
cytokeratin antibody, which stains biliary cells and oval
cells [17] and by an anti-E-cadherin antibody which
stains periportal hepatocytes, biliary cells and oval cells
(Figure 1). The positive immunoreactivity was compared
to an anti-M-Pk antibody staining (Rockland, USA)
which was reported to detect oval cells as well [2], but
we found nearly all sinusoidal cells positively marked
(Figure 1). We confirmed this result using two further
antibodies, which specifically recognize the M2-Pk epi-
tope (clone DF4 and rabbit anti-M2-Pk, Table 1). Both
antibodies also stained nearly all sinusoidal cells (see
additional File 2). Only smooth muscle cells of the ves-
sels were ambiguously labelled.

As expected, M2-Pk staining in CDE livers was more
intense than in control livers. We validated the gain of
M-Pk expression by Q-RT-PCR with different primer
pairs, which amplify either both splice forms of M-Pk
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(primer pair 1; Table 2) or only M2-Pk (primer pair 3;
Table 2) or M1-Pk (primer pairs 4, 5 and 6; Table 2)
(Figure 2A). The identity of mouse M1-Pk was determined
by sequencing of partial cDNA clones (M-Pk-up and
M-Pk-down primer; additional File 3) derived from mouse
heart, because this tissue is known to express solely
M1-Pk. A strong up-regulation of both splice variants in
livers of CDE treated mice was detected (Figure 2A).

Both, the elevation of M1-Pk and M2-Pk on RNA level
and the increase of M-Pk positive cells point to expan-
sion of sinusoidal cells due to CDE diet. Therefore, it
was necessary to analyse the expression levels of known
marker proteins of sinusoidal liver cells to prove which
type of cells enriches due to CDE conditions. Two pos-
sibilities can be expected. In the case of sole enrichment
of oval cells the M2-Pk elevation would exclusively be
attributed to oval cells and vice versa the increase of
M2-Pk under CDE diet might be considered as a marker
of oval cell enrichment. But in the case of enrichment of
other cell types during CDE diet and simultaneous
expression of M2-Pk in these cell types, the enzyme is
ultimately disqualified for being oval cell specific.

Altered marker protein expression of sinusoidal liver cells
indicates expansion of oval cells and HSCs under CDE diet
Expression levels of different published markers of sinu-
soidal cells (Table 3) were determined in CDE livers by
Q-RT-PCR and compared to hepatocytic markers L-Pk
and adipophilin, an indicator of fatty liver induction [18]
(Figure 2B). As expected, we found a 2.5 fold reduced
expression of L-Pk and a 7.8 fold induction of adipophi-
lin in livers of CDE treated mice. The mRNA levels of
all biomarkers of sinusoidal cells were up-regulated. Sur-
prisingly, also an increase of GFAP was detected. Actu-
ally, GFAP is considered a marker of quiescent HSCs
and CDE diet is regarded a fibrotic condition that
should direct to activation and transdifferentation of
HSCs into extracellular matrix producing myofibro-
blasts. This process is accompanied by an expression
switch from GFAP to alpha smooth muscle actin
(SMA). In this context a down-regulation of GFAP
expression was expected. The observed elevation of
GFAP expression also contrasts to the regular increase
of two other activation markers of hepatic stellate cells,
nestin and vimentin.

On histological level, we found a sophisticated expres-
sion pattern of GFAP in CDE livers compared to control
ones (Figure 3). Firstly, a remarkable increase of GFAP
positive HSCs in pericentral and midzonal region in CDE
livers was detected (Figure 3D). Secondly, there was a quite
variable positive staining of biliary cells in control livers
and a distinct slight GFAP-positive staining of biliary cells
and oval cells periportally in CDE livers (Figures 3A, A’).
Vice versa GFAP positive cells with long appendices were
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Cytokeratin

Figure 1 CDE diet induces both an oval cell response and a response of sinusoidal liver cells. Immunohistochemical stainings of
cytokeratin, E-cadherin and M-Pk were compared from normal mice (left panel) and CDE treated mice (right panel). Black arrows indicate
ductular accumulation of oval cells. These cells were displayed with a pan specific anti-cytokeratin antibody (A, A). This antibody additionally
detects cells of biliary ducts. An immunohistochemical staining with anti-E-cadherin antibody reliably displays oval cells, but reacts also with
biliary cells and additionally with periportal hepatocytes. The anti-M-Pk antibody (Rockland, Table 1) marks oval cells but also biliary cells and
cells of hepatic sinusoids. Sinusoidal cells accumulate under CDE conditions (C') PV = portal vein. Bar = 50 pm.

Table 1 Antibodies

Antibody Supplier/source Dilution
Rat-anti-mouse CD31(PECAM-1) BD Pharmingen 1:100
Rat-anti-mouse F4/80 (Clone A3-1) Serotech 1:50
Rabbit-anti-cow-cytokeratin DAKO 1:500
Rabbit-anti-cow-GFAP DAKO 1:500
Goat-anti-rabbit-pyruvate kinase Rockland incorporation 1:500-1:1,000
Mouse-anti-human pyruvate kinase (Clone DF 4) Schebo Biotech AG 1:50
Rabbit-anti-human-M2-Pk Cell Signaling 1:100
Chicken-anti-vimentin Chemicon 1:5,000
Mouse-anti-vimentin S82 1:100
Rat-anti-BrdU Serotech 1:50
Mouse-anti-human-E-cadherin BD Transduction laboratories 1:100
Mouse-anti-rat-Nestin (Clone Rat-401) Chemicon 1:100
Anti-alpha-smooth muscle actin (Clone 1A4) SIGMA 1:100
Mouse-anti-human-N-cadherin BD Transduction laboratories 1:100

Rabbit-anti-mouse-LI-cadherin

Gift from Dr. R. Ge3ner

1:1,000
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Table 2 Primers
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Upper primer

Lower primer

Accession number

Adipophilin ccctgtctaccaagetctge cgatgcttctcttccactcc NM_007408
L-Pk ttctgtctcgcetaccgacct cctgtcaccacaatcaccag NM_013631
GFAP cacgaacgagtccctagage atggtgatgcggttttcttc NM_012773
Vimentin atgcttctctggcacgtctt agccacgctttcatactgct NM_011701
Nestin gatcgctcagatcctggaag gagaaggatgttgggctgag NM_016701
PECAM1(CD31) tgcaggagtccttctccact acggtttgattccactttge NM_008816
CcD14 ctgatctcagecctctgtec gcttcagcccagtgaaagac NM_009841
Cyclophilin aagactgaatggctggatgg ttacaggacattgcgagcag NM_008907
E-cadherin tgctgattctgatcctgctg ggagccacatcatttcgagt NM_009864
N-cadherin ctgggacgtatgtgatgacg ggattgccttccatgtctgt NM_007664
LI-cadherin cctgaagcccatgacattct ccgctcttgtttetetgtec NM_019753
M-Pk-pair 1 gcatcatgctgtctggagaa gtaaggatgccgtgctgaat NM_011099
M-Pk pair 3 tcgaggaactccgecgectg gtaaggatgccgtgctgaat NM_011099
M-Pk pair 4 cagacctc atggaggcca tgg gtaag gatgccgtgctgaat Heart cDNA and NM_011099
M-Pk-pair 5 tgtttagcagcagctttg Ctatcattgccgtgactcga Heart cDNA and NM_011099
M-Pk-pair 6 caccgtctgctgtttgaaga ctatcattgccgtgactcga Heart cDNA and NM_011099

only rarely seen periportally excluding any substantial
enclosure of oval cells, which were instead surrounded by
SMA-positive myofibroblasts as already reported pre-
viously [4] and shown here (Figure 3C). GFAP staining in
biliary cells (cholangiocytes) was already demonstrated
previously [19], whereas the GFAP expression in mouse
oval cells is a new finding and potentially opens a link to
HSCs. The identity of an oval cell specific GFAP signal was
subsequently further verified by examining liver tissue of
transgenic mice that express Cre-recombinase driven by a
GFAP-promoter (GFAP-Cre-mouse). Because Cre-recom-
binase (Cre) is a recombinant protein, any cross reactivity
with antibodies directed against endogenous mouse
protein is prevented. Its nuclear localization allows a clear
discrimination of cell types. We detected Cre-positive
biliary cells in untreated mice and Cre-positive biliary
cells and oval cells in CDE treated GFAP-Cre-mice
(Figure 3B, B).

The immunohistological examination of livers of CDE
treated mice relative to the other markers listed in Table
3 shows that Kupffer cells (positively stained by anti-F4/
80-antibody), vimentin-, PECAM (CD31)- and nestin-
positive cells expand in addition to GFAP-positive cells
in CDE liver sections (additional File 4). To exclude a
misinterpretation due to the mixed genetic background
of the mice used in our study, we also included paraffin
embedded tissue of a former CDE study using C57Bl/6
mice [5] and confirmed our results (data not shown).

Oval cells, HSCs and Kupffer cells proliferate due to CDE
diet and likewise rapidly growing liver related cell lines
express M2-Pk

M2-Pk is commonly known to elevate in rapidly grow-
ing cells. Firstly, we tested the proliferative state of

distinct sinusoidal cell populations by double labelling
experiments combining BrdU-staining with biomarker
staining in liver sections of CDE treated mice (Figure 4).
BrdU positive cells occur in clusters pointing to clonal
expansion. As expected, BrdU/cytokeratin (oval cells)
double-positive cells were restricted to the periportal
area (Figure 4A), whereas BrdU/strong GFAP double
positively labelled HSCs and BrdU/vimentin double-
positive cells were found almost exclusively in the peri-
central region. In contrast, BrdU/F4/80 (Kupffer cells)
double-positive cells were uniformly distributed over the
whole lobule, but enriched in clusters around perished
hepatocytes (Figure 4D). No BrdU/CD31 double positive
cells were detected, though increased expression of
CD31 was determined by Q-RT-PCR and in situ. This
fact points to a rise of CD31 expression in existing sinu-
soidal endothelial cells (not shown).

Secondly, we examined rapidly growing mouse liver
related cell lines for their expression of M-Pk and com-
pared it to primary hepatocytes and freshly isolated
sinusoidal cells. We included into our study oval cell
lines OVUES867 and 265 [20], the monocyte/macrophage
cell line RAW264.7 (DSMZ, Braunschweig, Germany),
the hepatic stellate cell line HSC-Mim 1-4 [21], the liver
tumor cell line Hepa 1C7 (DSMZ, Braunschweig,
Germany), as well as primary sinusoidal endothelial cells
(SECs) and primary sinusoidal cells both derived from
freshly isolated mouse liver of control mice. Obtained
RT-PCR products were cloned and at least five clones
from every cell type were sequenced. Clones from cell
lines were 100% M2-Pk homologous. Seventy% of the
sequenced clones from primary SECs and sinusoidal
cells were from M2-Pk type and 30% of the clones dis-
played M1-Pk sequence. Probably, the M1-Pk signal is
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Figure 2 Quantification of biomarkers in liver extracts of CDE
treated mice. Q-RT-PCR of total M-Pk, M1-Pk and M2-Pk with
different primer pairs as indicated (A) and Q-RT-PCR of ADRP, a
marker for lipid deposition in hepatocytes, L-Pk (exclusively
expressed in hepatocytes), GFAP (classical marker of HSCs), vimentin
(common marker of Kupffer cells, SECs, activated HSCs and
fibroblasts), nestin (HSC marker), PECAM (CD31, marker for
endothelial cells) and CD14 (cell surface marker of monocytes/
macrophages like Kupffer cells) (B). Six treated mice were compared
to six untreated age-matched mice. Reference line represents
means in untreated mice set 100%. Statistical significant differences
P < 0.05 (Mann Whitney ranks sum test) are indicated by an asterisk.

due to remaining cell contamination of primary cells
with smooth muscle cells of liver vessels.

M2-Pk colocalises with most sinusoidal cell populations

We analysed double fluorescence stainings of M2-Pk
(antibody DF-4, Table 1) with markers of sinusoidal
cells using laser scanning microscopy to attribute the
M2-Pk signal to the appropriate cell type (Figure 5).
M2-Pk colocalized with F4/80 (Kupffer cell marker, Fig-
ure 5A), GFAP (HSC marker, Figure 5B) and vimentin
in pericentral and midzonal regions (Figure 5C). Double
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Table 3 Marker of liver cell types
Protein Cell type Reference
ADRP Hepatocytes [18]
Induction of fatty liver
L-Pk Hepatocyte specific pyruvate kinase (7]
GFAP Quiescent hepatic stellate cells [35]
Vimentin  Activated hepatic stellate cells [33]
Fibroblasts [44]
Sinusoidal endothelial cells [34]
Kupffer cells [45]
Nestin Activated hepatic stellate cells [33]
PECAM(=  Activated defenestrated sinusoidal endothelial [38]
CD31) cells, endothelial cells of vessels
CcD14 Macrophages and monocytes [46]

fluorescence of anti-vimentin with anti-CD31 demon-
strates that SECs belong to the vimentin positive cell
type (Figure 5F).

Double fluorescence of vimentin with GFAP assigns
pericentral/midzonal activated HSCs to the mesenchymal
cell pool (Figure 5D), which is well separated from the
faintly GFAP positive periportal cell pool (Figure 5E).
There was no overlapping expression of M2-Pk with
smooth muscle actin (not shown).

Cell adhesion in CDE livers

Both, loss of hepatocytes and the integration of stem
cells in liver tissue require a rearrangement of cell-cell
contacts in liver tissue. These contacts are mainly estab-
lished by adherens junctions that are formed by cadher-
ins. Like other authors [4] we also found E-cadherin
overexpressed in CDE livers (Figure 1 and additional
File 1), but identified additionally P-cadherin and
LI-cadherin elevated (additional File 1). Because
LI-cadherin was the most up-regulated cadherin and is
the embryonal mouse liver form it was expected that
this cadherin is related to oval cells because of their
stem cell character. However, immunostaining of liver
sections of CDE-treated mice shows clearly that this
embryonal form is re-expressed by hepatocytes (addi-
tional File 1).

Discussion

The two well established consequences of CDE diet in
mouse liver, enrichment of oval cells and up-regulation
of M-Pk [2,13-15], were re-evaluated in our study and
must be interpreted from a new perspective. Our results
advise to discuss these two phenomena on two indepen-
dent levels.

Firstly, an increase of M-Pk in liver of CDE treated
mice reflects the sum of elevated M1- and M2-Pk. For
the first time, the two forms in mouse liver extracts
under CDE conditions were differentially studied. The
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Figure 3 Zonal differences of GFAP and GFAP-reporter expression in control and CDE treated mice in contrast to alpha-smooth
muscle actin. Immunohistochemistry of GFAP in liver sections of control (A) and CDE treated mice (A). In B and B' the reporter enzyme Cre-
recombinase has a nuclear localisation and was therefore used to demonstrate GFAP-promoter activity in CDE treated mice (B) compared to
controls (B). HSCs are identifiable by their long, slender GFAP positive appendages. Biliary cells (black arrows) are also decorated with GFAP
respectively express the Cre reporter. Under CDE conditions a third cell type, oval cells (brown, white arrows), express GFAP. The expression
pattern of GFAP and GFAP-reporter in the periportal region of liver lobulus (A, B) is completely different from that in the pericentral region (D),
(Cre in pericentral region is not shown, because there was no staining). Oval cell clusters, identifiable by their ductular formation, are surrounded
by alpha-smooth muscle positive cells (C).

 ASAR ot b e e & :
Figure 4 Expansion of oval cells and sinusoidal cells under CDE conditions is proliferative. Double-immunohistochemistry of BrdU with
cytokeratin (A), BrdU with GFAP (B), BrdU with vimentin (C) and BrdU with F4/80 (D). In A, B and C, BrdU-positive nuclei are labelled in brown
and the corresponding biomarkers in purple. In (D) BrdU-positive nuclei are labelled in purple and the corresponding Kupffer cell marker (F4/80)
in brown. Nuclei were counterstained with hematoxylin (blue). Bars = 50 um.
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Figure 5 Confocal laser scanning microscopy of M2-Pk and biomarkers of sinusoidal liver cells. Double immunofluorescence of M2-Pk
(green, A, B', C) with F4/80 (red, A), with GFAP (red, B) and with vimentin (red, C). Merged images are shown in A", B” and C", respectively.
Colocalization of GFAP (red, D, E) with vimentin in a pericentral (green, D') and in a periportal (green, E) region is shown in D" and E”,
respectively. Faint red fluorescence of the membranes of biliary cells is indicated by the white arrow in E. Colocalization of CD31
immunoreactivity (red, F) with vimentin (green, F') is shown in F”. Immunofluorescence stainings were recorded by Confocal Laser Scanning
microscopy. Bar = 20 pm.

quantification of M-Pk with a PCR method not distin-
guishing between the two forms [6] can not be accepted
to be a specific signal of oval cells, because our in vitro
data clearly show that oval cells express only M2-Pk.
This result is of special interest in time slot studies,
because it was shown recently that a myofibrobl-
astic expansion precedes the oval cell proliferation in
CDE diet [4]. Accordingly, at different time points of
CDE diet the fraction of M1- and M2-type may vary
considerably.

Secondly, M2-Pk reflects the activation of both oval
cells and sinusoidal cell types as revealed by our in situ
results. Thus, our results verify for the mouse the earlier
findings in rats that endothelial cells, biliary cells, Kupf-
fer cells [7,10] and HSCs [9] express M2-Pk. Further-
more, also infiltrating immune cells may contribute to
M2-Pk expression demonstrated by our in vitro results.
In addition to the early expansion of myofibroblasts [4],
we definitely show that at least HSCs and Kupffer cells
expand due to proliferation in CDE livers and M2-Pk is
preferentially expressed in exactly the cells with high
DNA synthesis. Therefore, M2-Pk should not longer be
considered a specific oval cell marker.

A new and remarkable result of our study is the GFAP
expression pattern in livers of CDE treated mice. GFAP
is commonly used to detect HSCs, since it specifically

detects this cell type in normal rat liver [22]. We
observed GFAP expression in three cell types, in HSCs
and biliary cells in all liver samples and in oval cells
under CDE conditions. The GFAP expression in epithe-
lial cells of biliary ducts was recently also detected by
others [19] and a TGF-f dependent up-regulation of
GFAP was demonstrated in cultured rat oval cells [23].
If GFAP is expressed in biliary cells as well as in HSCs,
then any fate mapping based on GFAP promoter activ-
ity, as recently used for tracing the source of oval cells
[19], becomes less convincing. Moreover, we detected in
GFAP-Cre mice no nuclear signal of Cre-reporter in
HSCs but only in biliary cells and oval cells. This is
exactly the localization, which was reported from var-
ious GFAP promoter reporter mice [24,25]. It is remark-
able that GFAP expression of oval cells fits in the list of
other published oval cell markers that share their
expression with one of the epithelial cell types of liver.
For example, the A6 antigen [26] and cytokeratins are
also expressed in cholangiocytes, and E-cadherin is
found in both, portal hepatocytes and cholangiocytes
[16]. Even the stem cell marker CD133 used for defining
a subpopulation of HSCs [27] was also found in oval
cells [28]. This intercellular sharing of subsets of surface
antigens among cells of epithelial and mesenchymal
morphology suggests that EMT (and possible MET)
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might play a much greater role in liver regeneration
under toxic conditions than previously thought. Thus,
solving the mystery of how liver regeneration from stem
cells and progenitor cells is achieved seems to remain
an ongoing challenge waiting for more sophisticated cell
biological techniques. As we state herein biomarkers
may help in this endeavour only, if their expression is
carefully studied under the specific conditions used.

A second important aspect of GFAP expression is
linked to its strong up-regulation in CDE mouse livers.
As shown herein this is due to enhanced proliferation of
HSC in the midzonal/pericentral region. Similarly, up-
regulation of GFAP was shown in injured human [29],
rat [30], and mouse liver [31] and seems comparable to
the complex reaction of “gliosis” in brain as a response
to many injuries of CNS. Gliosis also includes both pro-
liferation and hypertrophy of GFAP expressing cells
[32]. Two other markers, nestin and vimentin, were
expressed by activated HSCs [33] a finding confirmed
herein for the activation of GFAP positive HSCs (all
GFAP positive HSCs coexpressed vimentin) under CDE
conditions.

For the first time, the proliferation of midzonal and
pericentral located HSC populations was shown. This is
also important for considering the origin of myofibro-
blasts, which play a central role in matrix synthesis and
remodelling during oval cell expansion. Like others
[4,15] we also detected a strong up-regulation of SMA
positive cells in CDE livers. Interestingly, periportal
SMA positive cells co-expressed vimentin, a protein
actually synthesized in fibroblasts [34], suggesting their
origin from periportal (myo-)fibroblasts rather than
from HSCs, since co-expression of GFAP, a characteris-
tic for the transdifferentiation into myofibroblasts
demonstrated in vitro [35,36] but not in vivo, was rarely
detectable. Even though we might have missed such an
event in an early phase after exposure to CDE, it is
remarkably that the above mentioned activation of HSC
persists even after two weeks. Thus, HSCs seem to have
other functions than transdifferentiation to myofibro-
blasts as it was discussed in a recent study using a rat
oval cell model [37].

Up-regulation of CD31 (PECAM) in livers of CDE trea-
ted mice is another new finding of this study. The lack of
any BrdU/CD31 co-expression points to an increase of
CD31 in SECs. In untreated livers CD31 positive cells
were hardly detected, whereas up-regulation seems to be
associated with dedifferentiation of SECs into a defene-
strated endothel during pseudocapillarization due to
fibrotic processes [38] which also occur under CDE
conditions [4].

The impact of re-expression of LI-cadherin in adult
mouse liver during CDE diet is still unclear and cur-
rently under investigation in double knock-out mice for
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LI and E-cadherin in our group. Possibly, re-expression
of LI-cadherin, an embryonal marker of mouse liver
[39], prevents the dissociation of cellular connections on
sites of insufficient expression of E-cadherin.

Conclusions

The present study clearly shows that in mouse liver
M2-Pk is expressed in nearly all cells of hepatic sinu-
soid. Undisputable CDE diet leads to an up-regulation
of M-PKk, but this rise is the summation of M1- and
M2-Pk. The elevation should no longer be misinter-
preted as a specific oval cell response. Under CDE con-
ditions GFAP expressing cells expand in a zonal specific
pattern. Pericentral GFAP positive cells seem to present
an activated cell type. Periportal oval cells express
GFAP, a common HSC marker. Therefore, this marker
does not seem suitable for tracing progenitors of hepa-
tocytes under CDE conditions.

Methods

Animals

GFAP-tTA mice (B6.Cg. Tg(GFAP-tTA)110Pop/], Jacksons
Laboratory, Bar Harbor, USA) were intercrossed with
PtetCre mice (LC1, [40]) resulting in double transgenic
mice expressing Cre-recombinase by GFAP promoter dri-
ven tTA expression (GFAP-Cre-mice). Mice of mixed
genetic backround (DAB/C57Bl/6) and GFAP-Cre mice
were given a CDE diet over 14 days. Cholin deficient ani-
mal chow without addition of methionine (Altromin, Lage,
Germany) was provided ad libitum and drinking water was
replaced by 0.165% ethionine solution (TCI, Europe,
Zwijndrecht, Belgium) and was also given ad libitum. Ani-
mal experiments were carried out in accordance with the
European Council Directive of 24 November 1986 (86/
609/EEC) and were approved by local authorities. 10 week
old mice of mixed genetic background (DBA/C57Bl/6)
and GFAP-Cre mice were used as controls. All mice
received a single i.p. injection of BrdU (10 mM, 1 ml per
100 g bodyweight) 2 h before killing.

Histology and immunohistochemistry

Liver samples were either quick-frozen in liquid nitrogen
and stored at -80°C or fixed in 4% paraformaldehyde and
routinely embedded in paraffin. Frozen liver samples
were used for PECAMI1 immunohistochemistry and were
processed as described [16]. For all other antibodies
(Table 1) and hematoxylin-eosin (HE) staining 2 pm par-
affin sections were used and processed as described [16]
Antigen-antibody complexes were detected by peroxi-
dase- or Cy-2/3-conjugated secondary antibodies as pre-
viously described [41,42]. Similarly processed liver slides
where the primary antibody was omitted were used as
negative controls. Monoclonal mouse antibodies were
used together with the Vector M.O.M. Immunodetection
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Kit (Vector Laboratories, CA, USA) to avoid a cross-reac-
tivity of secondary antibodies with endogeneous immuno-
globulins of mouse tissue.

For detection of Kupffer cells (the liver specific macro-
phages), the anti-F4/80 antibody was used instead of an
antibody against the macrophage/monocyte marker CD14.

Isolation of liver cells and cell culture

Hepatocytes were isolated using an in vitro perfusion
technique [43]. Liver was perfused with calcium free
buffered saline and subsequently with collagenase (1
mg/ml, 240 U/mg, Biochrom AG, Berlin, Germany). Cell
suspension was centrifuged thrice at 70 x g, 5 min.
Sinusoidal cells were isolated by perfusing liver consecu-
tively with calcium free buffered saline, pronase (1 mg/
ml) and collagenase (1 mg/ml) for 10 min each. Cell
suspension was centrifuged twice at 70 x g disposing
the hepatocytes and twice at 250 x g for washing and
collecting sinusoidal cells. Cells were re-suspended and
either undergone RNA isolation or incubated with anti-
CD146 antibody linked to magnetic beads according to
the suppliers recommendation (Miltenyi Biotec GmbH,
Bergisch Gladbach, Germany). CD146 positive SECs
were eluted after magnetic separation. After two wash-
ings RNA was extracted.

Isolation of RNA and quantitative real time RT-PCR
(Q-RT-PCR)

Total RNA was isolated using the PeqGOLD RNA Pure
isolation system (Peqlab, Erlangen, Germany). Quality of
RNA was assessed by electrophoresis in denaturing for-
maldehyde agarose gels and purity was estimated by
ratio A260/280 nm spectrophotometrically. Concentra-
tion was adjusted to 0.5 mg/ml. RT-PCR for real time
quantification was performed as previously described
[42] using primers listed in Table 2. RNA sample load
was normalized using amplifications with the house-
keeping gene cyclophilin. Standard curves of serial dilu-
tions from total RNA were used for transforming the
ct-values in concentration values depicted as arbitrary
units.

For primer design of total M-Pk and M2-Pk the RNA
sequence [Genbank: NM_011099] was used. For this
purpose we amplified M-Pk ¢cDNA, generated from
RNA of freshly isolated liver cells of control mice and
cultivated cell lines, with the M-Pk-up and M-Pk-down
primers (additional File 3).

Statistical analysis

All data are expressed as mean + SEM. Statistical analy-
sis was performed by Student’s t-test or Mann Whitney
Ranks sum Test using Sigma plot 11 (SSP Science, Chi-
cago, IL, USA). The accepted level of significance was
set at P < 0.05.
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Additional material

Additional file 1: Expression of cadherins confirms effectiveness of
CDE diet conditions. A Q-RT-PCR screen (A) verified the over-expression
of E-cadherin in CDE diet mice compared to untreated controls.
Remarkably, LI-cadherin the embryonal expressed liver cadherin was
even strongerly increased. Statistically significant differences P < 0.05
(Mann Whitney ranks sum test) are indicated by an asterisk.
Immunohistochemistry with anti-LI-cadherin antibody (B, B)
demonstrates the re-expression of LI-cadherin in hepatocytes of CDE
treted mice (B'). LI-cadherin is not detectable in normal adult mouse liver
(B). Bar = 50 um.

Additional file 2: M2-Pk demonstration in livers of CDE treated
mice. Immunohistochemistry with anti-M2-Pk (DF4, Schebo GmbH,
Germany, A) and anti-M2-Pk (Cell Signaling, USA, A") Smooth muscle cells
are indicated by white arrows. Bar = 50 um.

Additional file 3: cDNA Sequence of M-Pk and primers for M-Pk
quantification and sequencing. M2-Pk and M1-Pk have the same
sequence except for exon 9. Exon 8 and exon 10 are highlighted in gray.
The first line shows the shared sequence of M1- and M2-Pk and the
second line shows the different sequence of M1-Pk in exon 9. Primers
used for sequencing of RT-PCR-products of cell lines and isolated cells
were marked M-Pk-up and M-Pk-down. For real time quantification of
total M-Pk primer pair 1 (M-Pk-f1 (gcatcatgctgtctggagaa and M-Pk-down)
was used. M2-Pk was quantified with primer pair 3 (upper de Luis-primer
and M-Pk-down). M1-RT-PCR was done with primer pair 4 (M1-f-neu and
M-Pk-down), primer pair 5 (M1-rev-neu and M-Pk-forward) and primer
pair 6 (M1-f-512 up and M1-down 715). Primers used by authors Fleig et
al 2007 are indicated. These primers are lying in exon 11 and therefore
detect both isoforms forms together. Sequence of M2-Pk (NM_011099)
was fetched from Entrez Nucleotide database on NCBI http://www.ncbi.
nim.nih.gov.

Additional file 4: Number of cells of hepatic sinusoids raised in CDE
treated mice. Cells of hepatic sinusoids were depicted by
immunohistochemistry with an anti-F4/80 antibody (Kupffer cell, A, A),
an anti-vimentin-antibody (mesenchymal cells, B, B), an anti-nestin
antibody (activated HSCs, C, C') and an anti-CD31 (marker of
defenestrated endothelial cells, D, D). Bar = 50 um.

Acknowledgements

The authors thank Prof Mikulitis (Medizinische Universitat Wien) for the
kindly providing of cell line M4-1 HSC line and Dr. R. Gel3ner (Department
fur Chirurgie, Universitat Leipzig) for providing the anti-mouse LI-cadherin
antibody. We are grateful for fruitful discussions with Belinda Knight and
thank her for providing mouse liver slides. We thank Ms. Renate Bittner,
Ms. Doris Mahn and Mr. Frank Struck for technical assistance. This study
was supported by Interdisciplinary Centre for Clinical Research at the
Medical Faculty of the University of Leipzig (01KS9504, Project C1), by
Sachsisches Ministerium fir Wissenschaft und Kultur (SMWK 4-7531.50-02-
0361-07/2) and by the German Federal Ministry for Education and
Research (BMBF) within the program ‘Systems of Life -Systems Biology’
HepatoSys (FKZ 0313081F).

Author details

'Institute of Biochemistry, Medical Faculty, University of Leipzig,

Leipzig, Germany. “Department for Molecular and Cellular Mechanisms of
Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain
Research, Leipzig, Germany. *Department for Pathophysiology of Neuroglia,
University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig,
Germany. “Interdisciplinary Centre for Clinical Research, Medical Faculty of
the University of Leipzig, Leipzig, Germany.

Authors’ contributions

EU, JB and UU acquired, analysed and interpreted the data. JG made the

confocal laser scanning microscopy and edited the figures. EU wrote the

first draft of the manuscript and UU and RG co-wrote the final version. All
authors have read and approved the manuscript.



http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_011099
http://www.biomedcentral.com/content/supplementary/1476-5926-9-8-S1.TIFF
http://www.biomedcentral.com/content/supplementary/1476-5926-9-8-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1476-5926-9-8-S3.PDF
BackgroundOval cell reaction occurs under pathological conditions in human liver and in early stages of experimental hepatocarcinogenesis protocols in rodents provided hepatocyte proliferation is impaired. A frequently used protocol applies ethionine, the ethyl analogon of methionine, together with a choline deficient diet (CDE) 1. During CDE diet many metabolic changes in hepatocytes take place leading to deposition of lipids in hepatocytes and massive lethal deterioration of this cell type. Surviving hepatocytes are no longer able to proliferate and to repopulate the damaged tissue. Instead, oval cells, the bipotential progenitor cells of liver that are resistant against the destroying mechanisms, are activated and enrich. For proliferation they require a typical microenvironment which is provided by cells of the hepatic sinusoids closely adjacent to them. The pivotal role of an intrahepatic inflammatory response in this process, and the recruitment of Kupffer cells and other intrahepatic leukocytes were recently described in CDE treated mice 23. In addition to macrophages and monocytes other cells of hepatic sinusoids also contribute to this environment as it was recently shown for myofibroblasts 4. Changes concerning sinusoidal cells under CDE conditions are rarely investigated until now. An increase of the non-hepatocytic pyruvate kinase was demonstrated, however, in livers of CDE treated mice 256.In adult liver, different isoenzymes of pruvate kinase (Pk) exist. The L-isoenzyme is exclusively expressed in hepatocytes (L-Pk) 78, whereas the M-isoenzyme (M-�Pk) occurs in sinusoidal cells. From M-Pk two splice variants, the M1-Pk and M2-Pk, were detected. M2-Pk, known as the embryonic or tumor type, also belongs to the normal enzymatic configuration of cholangiocytes, hepatic stellate cells (HSCs) 9 and Kupffer cells 10 of rat liver. A switch from M1- to M2-type was demonstrated in rapidly growing cells 11, and M2-type was found to be expressed in oval cells 1213. Although M2-Pk was detected in most sinusoidal cell types in rat liver, it has gained the status of an oval cell marker particularly in mouse 561415. However, the distribution of Pk isoenzymes among mouse sinusoidal cells has not been explicitly studied yet.In the present study, we dissected the response of sinusoidal cells in the liver of CDE treated mice. We verified that CDE diet provokes enrichment and/or activation of all sinusoidal cells, and show that M2-Pk is expressed in nearly all cells of hepatic sinusoids in mouse liver except of smooth muscle cells and myofibroblasts. Thus, M-Pk cannot be used as a reliable marker of oval cells. Additionally, we found an overlapping expression of glial fibrillary acidic protein (GFAP) in epithelial (cholangiocytes, oval cells) and mesenchymal (HSCs) cells of mouse liver, rendering this marker useless for unequivocally tracing precursor cell lineages.ResultsM-Pk signal is not an oval cell specific responseWe used the CDE diet protocol to induce an oval cell response and proved the hypothesis that M-Pk is convenient to scale this oval cell reaction. To examine the effectiveness of our diet conditions, we determined E-�cadherin levels, previously found strongly elevated during CDE diet 4 and also indicating a strong oval cell response 16. As shown in additional File 1, clear-cut elevated E-cadherin levels confirm the applied CDE procedure. Because a non-ambiguous oval cell marker is not available we displayed oval cells by both an anti-pan cytokeratin antibody, which stains biliary cells and oval cells 17 and by an anti-E-cadherin antibody which stains periportal hepatocytes, biliary cells and oval cells (Figure 1). The positive immunoreactivity was compared to an anti-M-Pk antibody staining (Rockland, USA) which was reported to detect oval cells as well 2, but we found nearly all sinusoidal cells positively marked (Figure 1). We confirmed this result using two further antibodies, which specifically recognize the M2-Pk epitope (clone DF4 and rabbit anti-M2-Pk, Table 1). Both antibodies also stained nearly all sinusoidal cells (see additional File 2). Only smooth muscle cells of the vessels were ambiguously labelled.As expected, M2-Pk staining in CDE livers was more intense than in control livers. We validated the gain of M-�Pk expression by Q-RT-PCR with different primer pairs, which amplify either both splice forms of M-Pk (primer pair 1; Table 2) or only M2-Pk (primer pair 3; Table 2) or M1-Pk (primer pairs 4, 5 and 6; Table 2) �(Figure 2A). The identity of mouse M1-Pk was determined by sequencing of partial cDNA clones (M-Pk-up and M-�Pk-down primer; additional File 3) derived from mouse heart, because this tissue is known to express solely M1-�Pk. A strong up-regulation of both splice variants in livers of CDE treated mice was detected (Figure 2A).Both, the elevation of M1-Pk and M2-Pk on RNA level and the increase of M-Pk positive cells point to expansion of sinusoidal cells due to CDE diet. Therefore, it was necessary to analyse the expression levels of known marker proteins of sinusoidal liver cells to prove which type of cells enriches due to CDE conditions. Two possibilities can be expected. In the case of sole enrichment of oval cells the M2-Pk elevation would exclusively be attributed to oval cells and vice versa the increase of M2-Pk under CDE diet might be considered as a marker of oval cell enrichment. But in the case of enrichment of other cell types during CDE diet and simultaneous expression of M2-Pk in these cell types, the enzyme is ultimately disqualified for being oval cell specific.Altered marker protein expression of sinusoidal liver cells indicates expansion of oval cells and HSCs under CDE dietExpression levels of different published markers of sinusoidal cells (Table 3) were determined in CDE livers by Q-RT-PCR and compared to hepatocytic markers L-Pk and adipophilin, an indicator of fatty liver induction 18 (Figure 2B). As expected, we found a 2.5 fold reduced expression of L-Pk and a 7.8 fold induction of adipophilin in livers of CDE treated mice. The mRNA levels of all biomarkers of sinusoidal cells were up-regulated. Surprisingly, also an increase of GFAP was detected. Actually, GFAP is considered a marker of quiescent HSCs and CDE diet is regarded a fibrotic condition that should direct to activation and transdifferentation of HSCs into extracellular matrix producing myofibroblasts. This process is accompanied by an expression switch from GFAP to alpha smooth muscle actin (SMA). In this context a down-regulation of GFAP expression was expected. The observed elevation of GFAP expression also contrasts to the regular increase of two other activation markers of hepatic stellate cells, nestin and vimentin.On histological level, we found a sophisticated expression pattern of GFAP in CDE livers compared to control ones (Figure 3). Firstly, a remarkable increase of GFAP positive HSCs in pericentral and midzonal region in CDE livers was detected (Figure 3D). Secondly, there was a quite variable positive staining of biliary cells in control livers and a distinct slight GFAP-positive staining of biliary cells and oval cells periportally in CDE livers (Figures 3A, A�). Vice versa GFAP positive cells with long appendices were only rarely seen periportally excluding any substantial enclosure of oval cells, which were instead surrounded by SMA-positive myofibroblasts as already reported previously 4 and shown here (Figure 3C). GFAP staining in biliary cells (cholangiocytes) was already demonstrated previously 19, whereas the GFAP expression in mouse oval cells is a new finding and potentially opens a link to HSCs. The identity of an oval cell specific GFAP signal was subsequently further verified by examining liver tissue of transgenic mice that express Cre-recombinase driven by a GFAP-promoter (GFAP-Cre-mouse). Because Cre-recombinase (Cre) is a recombinant protein, any cross reactivity with antibodies directed against endogenous mouse �protein is prevented. Its nuclear localization allows a clear discrimination of cell types. We detected Cre-positive �biliary cells in untreated mice and Cre-positive biliary cells�and oval cells in CDE treated GFAP-Cre-mice (Figure�3B, B�).The immunohistological examination of livers of CDE treated mice relative to the other markers listed in Table 3 shows that Kupffer cells (positively stained by anti-F4/80-antibody), vimentin-, PECAM (CD31)- and nestin-positive cells expand in addition to GFAP-positive cells in CDE liver sections (additional File 4). To exclude a misinterpretation due to the mixed genetic background of the mice used in our study, we also included paraffin embedded tissue of a former CDE study using C57Bl/6 mice 5 and confirmed our results (data not shown).Oval cells, HSCs and Kupffer cells proliferate due to CDE diet and likewise rapidly growing liver related cell lines express M2-PkM2-Pk is commonly known to elevate in rapidly growing cells. Firstly, we tested the proliferative state of distinct sinusoidal cell populations by double labelling experiments combining BrdU-staining with biomarker staining in liver sections of CDE treated mice (Figure 4). BrdU positive cells occur in clusters pointing to clonal expansion. As expected, BrdU/cytokeratin (oval cells) double-positive cells were restricted to the periportal area (Figure 4A), whereas BrdU/strong GFAP double positively labelled HSCs and BrdU/vimentin double-positive cells were found almost exclusively in the pericentral region. In contrast, BrdU/F4/80 (Kupffer cells) double-positive cells were uniformly distributed over the whole lobule, but enriched in clusters around perished hepatocytes (Figure 4D). No BrdU/CD31 double positive cells were detected, though increased expression of CD31 was determined by Q-RT-PCR and in situ. This fact points to a rise of CD31 expression in existing sinusoidal endothelial cells (not shown).Secondly, we examined rapidly growing mouse liver related cell lines for their expression of M-Pk and compared it to primary hepatocytes and freshly isolated sinusoidal cells. We included into our study oval cell lines OVUE867 and 265 20, the monocyte/macrophage cell line RAW264.7 (DSMZ, Braunschweig, Germany), the hepatic stellate cell line HSC-Mim 1-4 21, the liver tumor cell line Hepa 1C7 (DSMZ, Braunschweig, �Germany), as well as primary sinusoidal endothelial cells (SECs) and primary sinusoidal cells both derived from freshly isolated mouse liver of control mice. Obtained RT-PCR products were cloned and at least five clones from every cell type were sequenced. Clones from cell lines were 100% M2-Pk homologous. Seventy% of the sequenced clones from primary SECs and sinusoidal cells were from M2-Pk type and 30% of the clones displayed M1-Pk sequence. Probably, the M1-Pk signal is due to remaining cell contamination of primary cells with smooth muscle cells of liver vessels.M2-Pk colocalises with most sinusoidal cell populationsWe analysed double fluorescence stainings of M2-Pk (antibody DF-4, Table 1) with markers of sinusoidal cells using laser scanning microscopy to attribute the M2-Pk signal to the appropriate cell type (Figure 5). M2-Pk colocalized with F4/80 (Kupffer cell marker, Figure 5A), GFAP (HSC marker, Figure 5B) and vimentin in pericentral and midzonal regions (Figure 5C). Double fluorescence of anti-vimentin with anti-CD31 demonstrates that SECs belong to the vimentin positive cell type (Figure 5F).Double fluorescence of vimentin with GFAP assigns pericentral/midzonal activated HSCs to the mesenchymal cell pool (Figure 5D), which is well separated from the faintly GFAP positive periportal cell pool (Figure 5E). There was no overlapping expression of M2-Pk with smooth muscle actin (not shown).Cell adhesion in CDE liversBoth, loss of hepatocytes and the integration of stem cells in liver tissue require a rearrangement of cell-cell contacts in liver tissue. These contacts are mainly established by adherens junctions that are formed by cadherins. Like other authors 4 we also found E-cadherin overexpressed in CDE livers (Figure 1 and additional File 1), but identified additionally P-cadherin and LI-�cadherin elevated (additional File 1). Because LI-�cadherin�was the most up-regulated cadherin and is the embryonal mouse liver form it was expected that this cadherin is related to oval cells because of their stem cell character. However, immunostaining of liver sections of CDE-treated mice shows clearly that this embryonal form is re-expressed by hepatocytes (additional File 1).DiscussionThe two well established consequences of CDE diet in mouse liver, enrichment of oval cells and up-regulation of M-Pk 2131415, were re-evaluated in our study and must be interpreted from a new perspective. Our results advise to discuss these two phenomena on two independent levels.Firstly, an increase of M-Pk in liver of CDE treated mice reflects the sum of elevated M1- and M2-Pk. For the first time, the two forms in mouse liver extracts under CDE conditions were differentially studied. The quantification of M-Pk with a PCR method not distinguishing between the two forms 6 can not be accepted to be a specific signal of oval cells, because our in vitro data clearly show that oval cells express only M2-Pk. This result is of special interest in time slot studies, because it was shown recently that a myofibrobl�astic�expansion precedes the oval cell proliferation in CDE�diet 4. Accordingly, at different time points of CDE diet the fraction of M1- and M2-type may vary considerably.Secondly, M2-Pk reflects the activation of both oval cells and sinusoidal cell types as revealed by our in situ results. Thus, our results verify for the mouse the earlier findings in rats that endothelial cells, biliary cells, Kupffer cells 710 and HSCs 9 express M2-Pk. Furthermore, also infiltrating immune cells may contribute to M2-Pk expression demonstrated by our in vitro results. In addition to the early expansion of myofibroblasts 4, we definitely show that at least HSCs and Kupffer cells expand due to proliferation in CDE livers and M2-Pk is preferentially expressed in exactly the cells with high DNA synthesis. Therefore, M2-Pk should not longer be considered a specific oval cell marker.A new and remarkable result of our study is the GFAP expression pattern in livers of CDE treated mice. GFAP is commonly used to detect HSCs, since it specifically detects this cell type in normal rat liver 22. We observed GFAP expression in three cell types, in HSCs and biliary cells in all liver samples and in oval cells under CDE conditions. The GFAP expression in epithelial cells of biliary ducts was recently also detected by others 19 and a TGF-� dependent up-regulation of GFAP was demonstrated in cultured rat oval cells 23. If GFAP is expressed in biliary cells as well as in HSCs, then any fate mapping based on GFAP promoter activity, as recently used for tracing the source of oval cells 19, becomes less convincing. Moreover, we detected in GFAP-Cre mice no nuclear signal of Cre-reporter in HSCs but only in biliary cells and oval cells. This is exactly the localization, which was reported from various GFAP promoter reporter mice 2425. It is remarkable that GFAP expression of oval cells fits in the list of other published oval cell markers that share their expression with one of the epithelial cell types of liver. For example, the A6 antigen 26 and cytokeratins are also expressed in cholangiocytes, and E-cadherin is found in both, portal hepatocytes and cholangiocytes 16. Even the stem cell marker CD133 used for defining a subpopulation of HSCs 27 was also found in oval cells 28. This intercellular sharing of subsets of surface antigens among cells of epithelial and mesenchymal morphology suggests that EMT (and possible MET) might play a much greater role in liver regeneration under toxic conditions than previously thought. Thus, solving the mystery of how liver regeneration from stem cells and progenitor cells is achieved seems to remain an ongoing challenge waiting for more sophisticated cell biological techniques. As we state herein biomarkers may help in this endeavour only, if their expression is carefully studied under the specific conditions used.A second important aspect of GFAP expression is linked to its strong up-regulation in CDE mouse livers. As shown herein this is due to enhanced proliferation of HSC in the midzonal/pericentral region. Similarly, up-regulation of GFAP was shown in injured human 29, rat 30, and mouse liver 31 and seems comparable to the complex reaction of �gliosis� in brain as a response to many injuries of CNS. Gliosis also includes both proliferation and hypertrophy of GFAP expressing cells 32. Two other markers, nestin and vimentin, were expressed by activated HSCs 33 a finding confirmed herein for the activation of GFAP positive HSCs (all GFAP positive HSCs coexpressed vimentin) under CDE conditions.For the first time, the proliferation of midzonal and pericentral located HSC populations was shown. This is also important for considering the origin of myofibroblasts, which play a central role in matrix synthesis and remodelling during oval cell expansion. Like others 415 we also detected a strong up-regulation of SMA positive cells in CDE livers. Interestingly, periportal SMA positive cells co-expressed vimentin, a protein actually synthesized in fibroblasts 34, suggesting their origin from periportal (myo-)fibroblasts rather than from HSCs, since co-expression of GFAP, a characteristic for the transdifferentiation into myofibroblasts demonstrated in vitro 3536 but not in vivo, was rarely detectable. Even though we might have missed such an event in an early phase after exposure to CDE, it is remarkably that the above mentioned activation of HSC persists even after two weeks. Thus, HSCs seem to have other functions than transdifferentiation to myofibroblasts as it was discussed in a recent study using a rat oval cell model 37.Up-regulation of CD31 (PECAM) in livers of CDE treated mice is another new finding of this study. The lack of any BrdU/CD31 co-expression points to an increase of CD31 in SECs. In untreated livers CD31 positive cells were hardly detected, whereas up-regulation seems to be associated with dedifferentiation of SECs into a defenestrated endothel during pseudocapillarization due to fibrotic processes 38 which also occur under CDE �conditions 4.The impact of re-expression of LI-cadherin in adult mouse liver during CDE diet is still unclear and currently under investigation in double knock-out mice for LI and E-cadherin in our group. Possibly, re-expression of LI-cadherin, an embryonal marker of mouse liver 39, prevents the dissociation of cellular connections on sites of insufficient expression of E-cadherin.ConclusionsThe present study clearly shows that in mouse liver M2-�Pk is expressed in nearly all cells of hepatic sinusoid. Undisputable CDE diet leads to an up-regulation of M-Pk, but this rise is the summation of M1- and M2-Pk. The elevation should no longer be misinterpreted as a specific oval cell response. Under CDE conditions GFAP expressing cells expand in a zonal specific pattern. Pericentral GFAP positive cells seem to present an activated cell type. Periportal oval cells express GFAP, a common HSC marker. Therefore, this marker does not seem suitable for tracing progenitors of hepatocytes under CDE conditions.MethodsAnimalsGFAP-tTA mice (B6.Cg.Tg(GFAP-tTA)110Pop/J, Jacksons Laboratory, Bar Harbor, USA) were intercrossed with ptetCre mice (LC1, 40) resulting in double transgenic mice expressing Cre-recombinase by GFAP promoter driven tTA expression (GFAP-Cre-mice). Mice of mixed genetic backround (DAB/C57Bl/6) and GFAP-Cre mice were given a CDE diet over 14 days. Cholin deficient animal chow without addition of methionine (Altromin, Lage, Germany) was provided ad libitum and drinking water was replaced by 0.165% ethionine solution (TCI, Europe, Zwijndrecht, Belgium) and was also given ad libitum. Animal experiments were carried out in accordance with the European Council Directive of 24 November 1986 (86/609/EEC) and were approved by local authorities. 10 week old mice of mixed genetic background (DBA/C57Bl/6) and GFAP-Cre mice were used as controls. All mice received a single i.p. injection of BrdU (10 mM, 1 ml per 100 g bodyweight) 2 h before killing.Histology and immunohistochemistryLiver samples were either quick-frozen in liquid nitrogen and stored at -80�C or fixed in 4% paraformaldehyde and routinely embedded in paraffin. Frozen liver samples were used for PECAM1 immunohistochemistry and were processed as described 16. For all other antibodies (Table 1) and hematoxylin-eosin (HE) staining 2��m paraffin sections were used and processed as described 16 Antigen-antibody complexes were dete�cted by peroxidase- or Cy-2/3-conjugated secondary antibodies as previously described 4142. Similarly processed liver slides where the primary antibody was omitted were used as negative controls. Monoclonal mouse antibodies were used together with the Vector M.O.M. Immunodetection Kit (Vector Laboratories, CA, USA) to avoid a cross-reactivity of secondary antibodies with endogeneous immunoglobulins of mouse tissue.For detection of Kupffer cells (the liver specific macrophages), the anti-F4/80 antibody was used instead of an antibody against the macrophage/monocyte marker CD14.Isolation of liver cells and cell cultureHepatocytes were isolated using an in vitro perfusion technique 43. Liver was perfused with calcium free buffered saline and subsequently with collagenase (1 mg/ml, 240 U/mg, Biochrom AG, Berlin, Germany). Cell suspension was centrifuged thrice at 70 � g, 5 min. Sinusoidal cells were isolated by perfusing liver consecutively with calcium free buffered saline, pronase (1 mg/ml) and collagenase (1 mg/ml) for 10 min each. Cell suspension was centrifuged twice at 70 � g disposing the hepatocytes and twice at 250 � g for washing and collecting sinusoidal cells. Cells were re-suspended and either undergone RNA isolation or incubated with anti-CD146 antibody linked to magnetic beads according to the suppliers recommendation (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). CD146 positive SECs were eluted after magnetic separation. After two washings RNA was extracted.Isolation of RNA and quantitative real time RT-PCR (Q-RT-PCR)Total RNA was isolated using the PeqGOLD RNA Pure isolation system (Peqlab, Erlangen, Germany). Quality of RNA was assessed by electrophoresis in denaturing formaldehyde agarose gels and purity was estimated by ratio A260/280 nm spectrophotometrically. Concentration was adjusted to 0.5 mg/ml. RT-PCR for real time quantification was performed as previously described 42 using primers listed in Table 2. RNA sample load was normalized using amplifications with the housekeeping gene cyclophilin. Standard curves of serial dilutions from total RNA were used for transforming the ct-�values in concentration values depicted as arbitrary units.For primer design of total M-Pk and M2-Pk the RNA sequence [Genbank: NM_011099] was used. For this purpose we amplified M-Pk cDNA, generated from RNA of freshly isolated liver cells of control mice and cultivated cell lines, with the M-Pk-up and M-Pk-down primers (additional File 3).Statistical analysisAll data are expressed as mean � SEM. Statistical analysis was performed by Student�s t-test or Mann Whitney Ranks sum Test using Sigma plot 11 (SSP Science, Chicago, IL, USA). The accepted level of significance was set at P < 0.05.Competing interestsThe authors declare that they have no competing interests.Authors� contributionsEU, JB and UU acquired, analysed and interpreted the data. JG made the confocal laser scanning microscopy and edited the figures. EU wrote the first draft of the manuscript and UU and RG co-wrote the final version. All authors have read and approved the manuscript.
BackgroundOval cell reaction occurs under pathological conditions in human liver and in early stages of experimental hepatocarcinogenesis protocols in rodents provided hepatocyte proliferation is impaired. A frequently used protocol applies ethionine, the ethyl analogon of methionine, together with a choline deficient diet (CDE) 1. During CDE diet many metabolic changes in hepatocytes take place leading to deposition of lipids in hepatocytes and massive lethal deterioration of this cell type. Surviving hepatocytes are no longer able to proliferate and to repopulate the damaged tissue. Instead, oval cells, the bipotential progenitor cells of liver that are resistant against the destroying mechanisms, are activated and enrich. For proliferation they require a typical microenvironment which is provided by cells of the hepatic sinusoids closely adjacent to them. The pivotal role of an intrahepatic inflammatory response in this process, and the recruitment of Kupffer cells and other intrahepatic leukocytes were recently described in CDE treated mice 23. In addition to macrophages and monocytes other cells of hepatic sinusoids also contribute to this environment as it was recently shown for myofibroblasts 4. Changes concerning sinusoidal cells under CDE conditions are rarely investigated until now. An increase of the non-hepatocytic pyruvate kinase was demonstrated, however, in livers of CDE treated mice 256.In adult liver, different isoenzymes of pruvate kinase (Pk) exist. The L-isoenzyme is exclusively expressed in hepatocytes (L-Pk) 78, whereas the M-isoenzyme (M-�Pk) occurs in sinusoidal cells. From M-Pk two splice variants, the M1-Pk and M2-Pk, were detected. M2-Pk, known as the embryonic or tumor type, also belongs to the normal enzymatic configuration of cholangiocytes, hepatic stellate cells (HSCs) 9 and Kupffer cells 10 of rat liver. A switch from M1- to M2-type was demonstrated in rapidly growing cells 11, and M2-type was found to be expressed in oval cells 1213. Although M2-Pk was detected in most sinusoidal cell types in rat liver, it has gained the status of an oval cell marker particularly in mouse 561415. However, the distribution of Pk isoenzymes among mouse sinusoidal cells has not been explicitly studied yet.In the present study, we dissected the response of sinusoidal cells in the liver of CDE treated mice. We verified that CDE diet provokes enrichment and/or activation of all sinusoidal cells, and show that M2-Pk is expressed in nearly all cells of hepatic sinusoids in mouse liver except of smooth muscle cells and myofibroblasts. Thus, M-Pk cannot be used as a reliable marker of oval cells. Additionally, we found an overlapping expression of glial fibrillary acidic protein (GFAP) in epithelial (cholangiocytes, oval cells) and mesenchymal (HSCs) cells of mouse liver, rendering this marker useless for unequivocally tracing precursor cell lineages.ResultsM-Pk signal is not an oval cell specific responseWe used the CDE diet protocol to induce an oval cell response and proved the hypothesis that M-Pk is convenient to scale this oval cell reaction. To examine the effectiveness of our diet conditions, we determined E-�cadherin levels, previously found strongly elevated during CDE diet 4 and also indicating a strong oval cell response 16. As shown in additional File 1, clear-cut elevated E-cadherin levels confirm the applied CDE procedure. Because a non-ambiguous oval cell marker is not available we displayed oval cells by both an anti-pan cytokeratin antibody, which stains biliary cells and oval cells 17 and by an anti-E-cadherin antibody which stains periportal hepatocytes, biliary cells and oval cells (Figure 1). The positive immunoreactivity was compared to an anti-M-Pk antibody staining (Rockland, USA) which was reported to detect oval cells as well 2, but we found nearly all sinusoidal cells positively marked (Figure 1). We confirmed this result using two further antibodies, which specifically recognize the M2-Pk epitope (clone DF4 and rabbit anti-M2-Pk, Table 1). Both antibodies also stained nearly all sinusoidal cells (see additional File 2). Only smooth muscle cells of the vessels were ambiguously labelled.As expected, M2-Pk staining in CDE livers was more intense than in control livers. We validated the gain of M-�Pk expression by Q-RT-PCR with different primer pairs, which amplify either both splice forms of M-Pk (primer pair 1; Table 2) or only M2-Pk (primer pair 3; Table 2) or M1-Pk (primer pairs 4, 5 and 6; Table 2) �(Figure 2A). The identity of mouse M1-Pk was determined by sequencing of partial cDNA clones (M-Pk-up and M-�Pk-down primer; additional File 3) derived from mouse heart, because this tissue is known to express solely M1-�Pk. A strong up-regulation of both splice variants in livers of CDE treated mice was detected (Figure 2A).Both, the elevation of M1-Pk and M2-Pk on RNA level and the increase of M-Pk positive cells point to expansion of sinusoidal cells due to CDE diet. Therefore, it was necessary to analyse the expression levels of known marker proteins of sinusoidal liver cells to prove which type of cells enriches due to CDE conditions. Two possibilities can be expected. In the case of sole enrichment of oval cells the M2-Pk elevation would exclusively be attributed to oval cells and vice versa the increase of M2-Pk under CDE diet might be considered as a marker of oval cell enrichment. But in the case of enrichment of other cell types during CDE diet and simultaneous expression of M2-Pk in these cell types, the enzyme is ultimately disqualified for being oval cell specific.Altered marker protein expression of sinusoidal liver cells indicates expansion of oval cells and HSCs under CDE dietExpression levels of different published markers of sinusoidal cells (Table 3) were determined in CDE livers by Q-RT-PCR and compared to hepatocytic markers L-Pk and adipophilin, an indicator of fatty liver induction 18 (Figure 2B). As expected, we found a 2.5 fold reduced expression of L-Pk and a 7.8 fold induction of adipophilin in livers of CDE treated mice. The mRNA levels of all biomarkers of sinusoidal cells were up-regulated. Surprisingly, also an increase of GFAP was detected. Actually, GFAP is considered a marker of quiescent HSCs and CDE diet is regarded a fibrotic condition that should direct to activation and transdifferentation of HSCs into extracellular matrix producing myofibroblasts. This process is accompanied by an expression switch from GFAP to alpha smooth muscle actin (SMA). In this context a down-regulation of GFAP expression was expected. The observed elevation of GFAP expression also contrasts to the regular increase of two other activation markers of hepatic stellate cells, nestin and vimentin.On histological level, we found a sophisticated expression pattern of GFAP in CDE livers compared to control ones (Figure 3). Firstly, a remarkable increase of GFAP positive HSCs in pericentral and midzonal region in CDE livers was detected (Figure 3D). Secondly, there was a quite variable positive staining of biliary cells in control livers and a distinct slight GFAP-positive staining of biliary cells and oval cells periportally in CDE livers (Figures 3A, A�). Vice versa GFAP positive cells with long appendices were only rarely seen periportally excluding any substantial enclosure of oval cells, which were instead surrounded by SMA-positive myofibroblasts as already reported previously 4 and shown here (Figure 3C). GFAP staining in biliary cells (cholangiocytes) was already demonstrated previously 19, whereas the GFAP expression in mouse oval cells is a new finding and potentially opens a link to HSCs. The identity of an oval cell specific GFAP signal was subsequently further verified by examining liver tissue of transgenic mice that express Cre-recombinase driven by a GFAP-promoter (GFAP-Cre-mouse). Because Cre-recombinase (Cre) is a recombinant protein, any cross reactivity with antibodies directed against endogenous mouse �protein is prevented. Its nuclear localization allows a clear discrimination of cell types. We detected Cre-positive �biliary cells in untreated mice and Cre-positive biliary cells�and oval cells in CDE treated GFAP-Cre-mice (Figure�3B, B�).The immunohistological examination of livers of CDE treated mice relative to the other markers listed in Table 3 shows that Kupffer cells (positively stained by anti-F4/80-antibody), vimentin-, PECAM (CD31)- and nestin-positive cells expand in addition to GFAP-positive cells in CDE liver sections (additional File 4). To exclude a misinterpretation due to the mixed genetic background of the mice used in our study, we also included paraffin embedded tissue of a former CDE study using C57Bl/6 mice 5 and confirmed our results (data not shown).Oval cells, HSCs and Kupffer cells proliferate due to CDE diet and likewise rapidly growing liver related cell lines express M2-PkM2-Pk is commonly known to elevate in rapidly growing cells. Firstly, we tested the proliferative state of distinct sinusoidal cell populations by double labelling experiments combining BrdU-staining with biomarker staining in liver sections of CDE treated mice (Figure 4). BrdU positive cells occur in clusters pointing to clonal expansion. As expected, BrdU/cytokeratin (oval cells) double-positive cells were restricted to the periportal area (Figure 4A), whereas BrdU/strong GFAP double positively labelled HSCs and BrdU/vimentin double-positive cells were found almost exclusively in the pericentral region. In contrast, BrdU/F4/80 (Kupffer cells) double-positive cells were uniformly distributed over the whole lobule, but enriched in clusters around perished hepatocytes (Figure 4D). No BrdU/CD31 double positive cells were detected, though increased expression of CD31 was determined by Q-RT-PCR and in situ. This fact points to a rise of CD31 expression in existing sinusoidal endothelial cells (not shown).Secondly, we examined rapidly growing mouse liver related cell lines for their expression of M-Pk and compared it to primary hepatocytes and freshly isolated sinusoidal cells. We included into our study oval cell lines OVUE867 and 265 20, the monocyte/macrophage cell line RAW264.7 (DSMZ, Braunschweig, Germany), the hepatic stellate cell line HSC-Mim 1-4 21, the liver tumor cell line Hepa 1C7 (DSMZ, Braunschweig, �Germany), as well as primary sinusoidal endothelial cells (SECs) and primary sinusoidal cells both derived from freshly isolated mouse liver of control mice. Obtained RT-PCR products were cloned and at least five clones from every cell type were sequenced. Clones from cell lines were 100% M2-Pk homologous. Seventy% of the sequenced clones from primary SECs and sinusoidal cells were from M2-Pk type and 30% of the clones displayed M1-Pk sequence. Probably, the M1-Pk signal is due to remaining cell contamination of primary cells with smooth muscle cells of liver vessels.M2-Pk colocalises with most sinusoidal cell populationsWe analysed double fluorescence stainings of M2-Pk (antibody DF-4, Table 1) with markers of sinusoidal cells using laser scanning microscopy to attribute the M2-Pk signal to the appropriate cell type (Figure 5). M2-Pk colocalized with F4/80 (Kupffer cell marker, Figure 5A), GFAP (HSC marker, Figure 5B) and vimentin in pericentral and midzonal regions (Figure 5C). Double fluorescence of anti-vimentin with anti-CD31 demonstrates that SECs belong to the vimentin positive cell type (Figure 5F).Double fluorescence of vimentin with GFAP assigns pericentral/midzonal activated HSCs to the mesenchymal cell pool (Figure 5D), which is well separated from the faintly GFAP positive periportal cell pool (Figure 5E). There was no overlapping expression of M2-Pk with smooth muscle actin (not shown).Cell adhesion in CDE liversBoth, loss of hepatocytes and the integration of stem cells in liver tissue require a rearrangement of cell-cell contacts in liver tissue. These contacts are mainly established by adherens junctions that are formed by cadherins. Like other authors 4 we also found E-cadherin overexpressed in CDE livers (Figure 1 and additional File 1), but identified additionally P-cadherin and LI-�cadherin elevated (additional File 1). Because LI-�cadherin�was the most up-regulated cadherin and is the embryonal mouse liver form it was expected that this cadherin is related to oval cells because of their stem cell character. However, immunostaining of liver sections of CDE-treated mice shows clearly that this embryonal form is re-expressed by hepatocytes (additional File 1).DiscussionThe two well established consequences of CDE diet in mouse liver, enrichment of oval cells and up-regulation of M-Pk 2131415, were re-evaluated in our study and must be interpreted from a new perspective. Our results advise to discuss these two phenomena on two independent levels.Firstly, an increase of M-Pk in liver of CDE treated mice reflects the sum of elevated M1- and M2-Pk. For the first time, the two forms in mouse liver extracts under CDE conditions were differentially studied. The quantification of M-Pk with a PCR method not distinguishing between the two forms 6 can not be accepted to be a specific signal of oval cells, because our in vitro data clearly show that oval cells express only M2-Pk. This result is of special interest in time slot studies, because it was shown recently that a myofibrobl�astic�expansion precedes the oval cell proliferation in CDE�diet 4. Accordingly, at different time points of CDE diet the fraction of M1- and M2-type may vary considerably.Secondly, M2-Pk reflects the activation of both oval cells and sinusoidal cell types as revealed by our in situ results. Thus, our results verify for the mouse the earlier findings in rats that endothelial cells, biliary cells, Kupffer cells 710 and HSCs 9 express M2-Pk. Furthermore, also infiltrating immune cells may contribute to M2-Pk expression demonstrated by our in vitro results. In addition to the early expansion of myofibroblasts 4, we definitely show that at least HSCs and Kupffer cells expand due to proliferation in CDE livers and M2-Pk is preferentially expressed in exactly the cells with high DNA synthesis. Therefore, M2-Pk should not longer be considered a specific oval cell marker.A new and remarkable result of our study is the GFAP expression pattern in livers of CDE treated mice. GFAP is commonly used to detect HSCs, since it specifically detects this cell type in normal rat liver 22. We observed GFAP expression in three cell types, in HSCs and biliary cells in all liver samples and in oval cells under CDE conditions. The GFAP expression in epithelial cells of biliary ducts was recently also detected by others 19 and a TGF-� dependent up-regulation of GFAP was demonstrated in cultured rat oval cells 23. If GFAP is expressed in biliary cells as well as in HSCs, then any fate mapping based on GFAP promoter activity, as recently used for tracing the source of oval cells 19, becomes less convincing. Moreover, we detected in GFAP-Cre mice no nuclear signal of Cre-reporter in HSCs but only in biliary cells and oval cells. This is exactly the localization, which was reported from various GFAP promoter reporter mice 2425. It is remarkable that GFAP expression of oval cells fits in the list of other published oval cell markers that share their expression with one of the epithelial cell types of liver. For example, the A6 antigen 26 and cytokeratins are also expressed in cholangiocytes, and E-cadherin is found in both, portal hepatocytes and cholangiocytes 16. Even the stem cell marker CD133 used for defining a subpopulation of HSCs 27 was also found in oval cells 28. This intercellular sharing of subsets of surface antigens among cells of epithelial and mesenchymal morphology suggests that EMT (and possible MET) might play a much greater role in liver regeneration under toxic conditions than previously thought. Thus, solving the mystery of how liver regeneration from stem cells and progenitor cells is achieved seems to remain an ongoing challenge waiting for more sophisticated cell biological techniques. As we state herein biomarkers may help in this endeavour only, if their expression is carefully studied under the specific conditions used.A second important aspect of GFAP expression is linked to its strong up-regulation in CDE mouse livers. As shown herein this is due to enhanced proliferation of HSC in the midzonal/pericentral region. Similarly, up-regulation of GFAP was shown in injured human 29, rat 30, and mouse liver 31 and seems comparable to the complex reaction of �gliosis� in brain as a response to many injuries of CNS. Gliosis also includes both proliferation and hypertrophy of GFAP expressing cells 32. Two other markers, nestin and vimentin, were expressed by activated HSCs 33 a finding confirmed herein for the activation of GFAP positive HSCs (all GFAP positive HSCs coexpressed vimentin) under CDE conditions.For the first time, the proliferation of midzonal and pericentral located HSC populations was shown. This is also important for considering the origin of myofibroblasts, which play a central role in matrix synthesis and remodelling during oval cell expansion. Like others 415 we also detected a strong up-regulation of SMA positive cells in CDE livers. Interestingly, periportal SMA positive cells co-expressed vimentin, a protein actually synthesized in fibroblasts 34, suggesting their origin from periportal (myo-)fibroblasts rather than from HSCs, since co-expression of GFAP, a characteristic for the transdifferentiation into myofibroblasts demonstrated in vitro 3536 but not in vivo, was rarely detectable. Even though we might have missed such an event in an early phase after exposure to CDE, it is remarkably that the above mentioned activation of HSC persists even after two weeks. Thus, HSCs seem to have other functions than transdifferentiation to myofibroblasts as it was discussed in a recent study using a rat oval cell model 37.Up-regulation of CD31 (PECAM) in livers of CDE treated mice is another new finding of this study. The lack of any BrdU/CD31 co-expression points to an increase of CD31 in SECs. In untreated livers CD31 positive cells were hardly detected, whereas up-regulation seems to be associated with dedifferentiation of SECs into a defenestrated endothel during pseudocapillarization due to fibrotic processes 38 which also occur under CDE �conditions 4.The impact of re-expression of LI-cadherin in adult mouse liver during CDE diet is still unclear and currently under investigation in double knock-out mice for LI and E-cadherin in our group. Possibly, re-expression of LI-cadherin, an embryonal marker of mouse liver 39, prevents the dissociation of cellular connections on sites of insufficient expression of E-cadherin.ConclusionsThe present study clearly shows that in mouse liver M2-�Pk is expressed in nearly all cells of hepatic sinusoid. Undisputable CDE diet leads to an up-regulation of M-Pk, but this rise is the summation of M1- and M2-Pk. The elevation should no longer be misinterpreted as a specific oval cell response. Under CDE conditions GFAP expressing cells expand in a zonal specific pattern. Pericentral GFAP positive cells seem to present an activated cell type. Periportal oval cells express GFAP, a common HSC marker. Therefore, this marker does not seem suitable for tracing progenitors of hepatocytes under CDE conditions.MethodsAnimalsGFAP-tTA mice (B6.Cg.Tg(GFAP-tTA)110Pop/J, Jacksons Laboratory, Bar Harbor, USA) were intercrossed with ptetCre mice (LC1, 40) resulting in double transgenic mice expressing Cre-recombinase by GFAP promoter driven tTA expression (GFAP-Cre-mice). Mice of mixed genetic backround (DAB/C57Bl/6) and GFAP-Cre mice were given a CDE diet over 14 days. Cholin deficient animal chow without addition of methionine (Altromin, Lage, Germany) was provided ad libitum and drinking water was replaced by 0.165% ethionine solution (TCI, Europe, Zwijndrecht, Belgium) and was also given ad libitum. Animal experiments were carried out in accordance with the European Council Directive of 24 November 1986 (86/609/EEC) and were approved by local authorities. 10 week old mice of mixed genetic background (DBA/C57Bl/6) and GFAP-Cre mice were used as controls. All mice received a single i.p. injection of BrdU (10 mM, 1 ml per 100 g bodyweight) 2 h before killing.Histology and immunohistochemistryLiver samples were either quick-frozen in liquid nitrogen and stored at -80�C or fixed in 4% paraformaldehyde and routinely embedded in paraffin. Frozen liver samples were used for PECAM1 immunohistochemistry and were processed as described 16. For all other antibodies (Table 1) and hematoxylin-eosin (HE) staining 2��m paraffin sections were used and processed as described 16 Antigen-antibody complexes were dete�cted by peroxidase- or Cy-2/3-conjugated secondary antibodies as previously described 4142. Similarly processed liver slides where the primary antibody was omitted were used as negative controls. Monoclonal mouse antibodies were used together with the Vector M.O.M. Immunodetection Kit (Vector Laboratories, CA, USA) to avoid a cross-reactivity of secondary antibodies with endogeneous immunoglobulins of mouse tissue.For detection of Kupffer cells (the liver specific macrophages), the anti-F4/80 antibody was used instead of an antibody against the macrophage/monocyte marker CD14.Isolation of liver cells and cell cultureHepatocytes were isolated using an in vitro perfusion technique 43. Liver was perfused with calcium free buffered saline and subsequently with collagenase (1 mg/ml, 240 U/mg, Biochrom AG, Berlin, Germany). Cell suspension was centrifuged thrice at 70 � g, 5 min. Sinusoidal cells were isolated by perfusing liver consecutively with calcium free buffered saline, pronase (1 mg/ml) and collagenase (1 mg/ml) for 10 min each. Cell suspension was centrifuged twice at 70 � g disposing the hepatocytes and twice at 250 � g for washing and collecting sinusoidal cells. Cells were re-suspended and either undergone RNA isolation or incubated with anti-CD146 antibody linked to magnetic beads according to the suppliers recommendation (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). CD146 positive SECs were eluted after magnetic separation. After two washings RNA was extracted.Isolation of RNA and quantitative real time RT-PCR (Q-RT-PCR)Total RNA was isolated using the PeqGOLD RNA Pure isolation system (Peqlab, Erlangen, Germany). Quality of RNA was assessed by electrophoresis in denaturing formaldehyde agarose gels and purity was estimated by ratio A260/280 nm spectrophotometrically. Concentration was adjusted to 0.5 mg/ml. RT-PCR for real time quantification was performed as previously described 42 using primers listed in Table 2. RNA sample load was normalized using amplifications with the housekeeping gene cyclophilin. Standard curves of serial dilutions from total RNA were used for transforming the ct-�values in concentration values depicted as arbitrary units.For primer design of total M-Pk and M2-Pk the RNA sequence [Genbank: NM_011099] was used. For this purpose we amplified M-Pk cDNA, generated from RNA of freshly isolated liver cells of control mice and cultivated cell lines, with the M-Pk-up and M-Pk-down primers (additional File 3).Statistical analysisAll data are expressed as mean � SEM. Statistical analysis was performed by Student�s t-test or Mann Whitney Ranks sum Test using Sigma plot 11 (SSP Science, Chicago, IL, USA). The accepted level of significance was set at P < 0.05.Competing interestsThe authors declare that they have no competing interests.Authors� contributionsEU, JB and UU acquired, analysed and interpreted the data. JG made the confocal laser scanning microscopy and edited the figures. EU wrote the first draft of the manuscript and UU and RG co-wrote the final version. All authors have read and approved the manuscript.
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