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Abstract
Background: Several highly proliferative human cells transiently activate telomerase, a
ribonucleoprotein with reverse transcriptase activity, to counterbalance replication-associated
telomere erosion and to increase stress resistance. Quiescent human hepatocytes exhibit very low
or undetectable levels of telomerase activity. However, hepatocytes display a remarkable
proliferative capability following liver injury. To investigate whether liver regeneration by
compensatory hyperplasia is associated with telomerase activation, we measured telomerase
activity in pig livers after 70 to 80% partial hepatectomy using a fully quantitative real-time telomeric
repeat amplification protocol. In contrast to commonly studied inbred laboratory mouse strains,
telomere length and telomerase activity in porcine tissues are comparable to humans.

Results: Following partial hepatectomy, histology revealed mitotic hepatocytes as marker for
compensatory hyperplasia. As expected, there was no induction of inflammation. Telomerase
activity increased significantly showing the highest levels (5-fold upregulation) in pigs treated with
partial hepatectomy and hepatic decompression. Moreover, telomerase activity significantly
correlated to the number of mitotic hepatocytes.

Conclusion: Our data demonstrate telomerase activation in liver regeneration by compensatory
hyperplasia in a large animal model with telomere biology comparable to humans. Telomerase
activation may constitute a mechanism to protect proliferating liver cells against telomere
shortening and oxidative stress.

Background
The human liver possesses a remarkable capability to
restore its functional capacity following liver injury by a
process termed compensatory hyperplasia [1,2]. Differen-
tiated and normally quiescent hepatocytes are the primary

cell type responsible for liver regeneration, especially fol-
lowing partial hepatectomy or administration of carbon
tetrachloride in rodent models [3]. As reserve compart-
ment, bipotent hepatic progenitor cells are activated if
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extensive loss or damage of hepatocytes with an impaired
replication capability occurs [4].

In most somatic human cells, cellular proliferation is
associated with progressive telomere shortening. Telom-
eres are specialized high-order chromatin structures that
protect chromosome ends against degradation by forming
molecular caps. In addition to telomere-stabilizing pro-
teins, telomeres consist of tens of kilo bases of telomeric
repeats [5,6]. After a certain number of cell divisions, rep-
lication-associated telomere shortening renders telomeric
caps unstable and chromosome ends unprotected. This
results in a dramatic upsurge in chromosomal aberra-
tions. Additionally, cells with unstable chromosome ends
activate their DNA damage response machinery with entry
into cell cycle exit and replicative senescence, a post-
mitotic quiescent state [7]. In contrast to somatic cells,
human germ and embryonic stem cells are capable of
undergoing an infinite number of cell divisions [8] In
these cells, the enzyme complex telomerase counterbal-
ances telomere erosion by de novo synthesis of telomeric
repeats onto chromosome ends [9]. Interestingly, telom-
erase activation in embryonic stem cells is also associated
with increased resistance to differentiation- and stress-
induced apoptosis [10,11].

Most differentiated human cells, including quiescent
hepatocytes, have low or undetectable levels of telomerase
activity [12]. However, certain highly proliferative human
cell types, such as cells in the regenerative basal layer of
epidermis [13] and B lymphocytes in the germinal center
[14-16], transiently express high levels of telomerase
activity upon commitment to clonal expansion. In line
with this observation, recent data indicate that telomerase
is actively regulated throughout the cell cycle in murine
hepatocytes [17]. Unfortunately, there are significant dif-
ferences between mice and humans regarding telomere
biology that are possible concerns in the use of mouse
models to investigate telomere maintenance and telomer-
ase regulation. For example, in marked contrast to
humans, commonly employed inbred laboratory mouse
strains have approximately ten times longer telomeres (up
to 150 kilo bases) and express robust levels of telomerase
activity in a wide range of somatic tissues, including nor-
mal liver [18]. According to current studies, these diver-
gences may be attributed to absence of a cis-acting
element repressing TERT promoter activity in murine cells
[19].

Pigs display no or very low levels of telomerase activity in
the liver [20]. Moreover, pig telomeres are comparable to
those of humans regarding length and shortening during
aging [21,22]. Because of these similarities, pigs have been
utilized as model system to investigate telomerase regula-
tion and telomere dynamics in mammalians [23]. In a

previous pig liver regeneration study, maximum regenera-
tive response occurred three days after 70% partial hepa-
tectomy [24]. The timing of the regenerative response in
pig livers is therefore comparable to other large animal
models with maximum mitotic activity on the 3rd postop-
erative day, which contrasts the regenerative peak
observed in rats after only 24 h post liver injury. To test
our hypothesis that liver regeneration by compensatory
hyperplasia is associated with telomerase activation, we
quantitated telomerase activity three days after partial
hepatectomy in pig liver tissue samples. Furthermore, we
correlated telomerase activity to the number of mitotic
hepatocytes and the degree of inflammatory infiltration.

Results
Surgical procedures and clinical chemistry
All surgical procedures were performed without relevant
perioperative mortality. As shown in Table 1, animals
were evenly distributed between the three experimental
groups (6 animals per group), and median weights were
not significantly different. Three days after surgery, liver
samples were collected and evaluated for mitotic activity,
hepatitis score, and telomerase activity. Blood samples
were obtained from all animals included in this investiga-
tion (n = 18) before and on each day after surgery. Clinical
chemistry results are summarized in Table 2.

As expected for animals receiving partial hepatectomy
(PH) with and without transjugular intrahepatic portosys-
temic shunt (TIPS), a decrease in serum albumin was
observed. Furthermore, a steady and significant increase
in serum bilirubin was detected in PH and PH/TIPS ani-
mals. Changes in serum bilirubin were more pronounced
in the PH/TIPS group with 6- to 8-fold higher values com-
pared to animals with control laparotomy (LT) on the 2nd
and 3rd postoperative day. In addition, clinical chemistry
revealed a significant increase in serum aspartate ami-
notransferases (AST) and alanine aminotransferases
(ALT) following PH and PH/TIPS. In PH and PH/TIPS ani-
mals, serum AST and ALT reached peak values on the 2nd
postoperative day and began to drop on the 3rd postoper-
ative day. Falling AST and ALT confirmed absence of pro-
longed postoperative liver injury. Other liver function
parameters did not show consistent changes during the
observation period. In summary, clinical chemistry in ani-
mals following PH or PH/TIPS reflected loss of functional
liver parenchyma and surgical induction of liver injury
with temporary rise of serum aminotransferases.

Mitotic activity and hepatitis scores
Mitotic hepatocytes were identified in the majority of liver
samples on the 3rd postoperative day after PH or PH/TIPS
(Figures 1C and 1D). The highest number of mitotic hepa-
tocytes was detected in the PH/TIPS group (Figure 2A). All
but one animal in the PH/TIPS group (n = 6) had detect-
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able mitotic hepatocytes with a median mitotic index
(MI), i.e., mitotic hepatocytes per ten high-power fields, of
7.5 and a maximum value of 41 (Figure 2A). In contrast,
mitotic activity was observed in only one out of six ani-
mals three days after LT. Taken together, mitotic hepato-
cytes as direct marker for liver regeneration by
compensatory hyperplasia were clearly identified in 65%
of PH and PH/TIPS animals (n = 11; histological assess-
ment not available for one PH animal).

As expected for liver resection models, histology did not
show relevant induction of hepatitis by PH or PH/TIPS
(Figure 2B). Only one LT and one PH/TIPS animal
showed grade 3 hepatitis. Grade 4 hepatitis was not
observed in this study. Moreover, although the median
hepatitis score was slightly higher in the PH/TIPS group
(2.0 [1-3], n = 6; median [range]) compared to animals
with LT (1.5 [0 – 3], n = 6) or PH (1.0 [0 – 1], n = 5), these
differences were not significant. In addition, animals
treated by PH showed a lower median hepatitis score in
comparison to LT animals.

Telomerase activation
We quantitated telomerase activity using a SYBR Green-
based real-time quantitative telomeric repeat amplifica-
tion protocol (RQ-TRAP) [25]. Sufficient tissue quality
(RNA integrity) was confirmed for all liver samples by
denaturing agarose gel electrophoresis and ethidium bro-
mide staining. In contrast to a previous study showing
detectable telomerase activity in a conventional end-point
TRAP assay only in male liver tissue [20], we detected low
telomerase activity in control liver samples (normal liver
tissue without mitotic hepatocytes) of both genders with-
out significant difference between male (n = 6) and
female pigs (n = 6). Furthermore, liver samples from pigs
with and without LT displayed similar telomerase activity.
The median relative telomerase activity (RTA), i.e., telom-
erase activity per μg total protein in comparison to 293T
cell standards, in control animals before LT was 42.2 [24.6
– 63.2] (n = 6) and not significantly different from 54.8
[32.4 – 106.4] (n = 6) in animals three days after LT (P =
0.485). Comparing median RTA levels in the three exper-
imental groups (Figure 3A), significantly higher values

Table 1: Experimental groups and baseline characteristics.

Group N Gender (male/female) Body weight (kg)1 P2

LT 6 2/4 33.8 [29.0 – 45.0]
PH 6 2/4 33.8 [27.0 – 45.5] 1.000
PH/TIPS 6 5/1 29.5 [24.0 – 44.9] 0.240

1Weights expressed as median [range]. 2Comparison to LT with P < 0.05 (Mann-Whitney U test) considered significant. Abbreviations: LT, 
laparotomy; PH, partial hepatectomy; TIPS, transjugular intrahepatic portosystemic shunt.

Table 2: Clinical chemistry.

Parameter Hours LT (n = 6) PH (n = 6) P1 PH/TIPS (n = 6) P1

Albumin (g/l) 0 39 [30 – 43] 40 [38 – 43] 0.485 41 [35 – 41] 0.818
24 42 [33 – 43] 38 [35 – 39] 0.329 36 [31 – 39] 0.082
48 39 [31 – 42] 39 [34 – 41] 0.931 36 [33 – 40] 0.429
72 38 [28 – 40] 36 [30 – 39] 0.589 32 [28 – 35] 0.132

Bilirubin (mg/dl) 0 0.2 [0.2 – 0.2] 0.2 [0.2 – 0.2] 1.000 0.2 [0.2 – 0.2] 1.000
24 0.2 [0.2 – 0.4] 0.7 [0.3 – 1.3] 0.009 1.1 [0.5 – 1.9] 0.004
48 0.2 [0.2 – 0.4] 0.8 [0.4 – 1.5] 0.004 1.3 [0.3 – 5.7] 0.009
72 0.2 [0.2 – 0.2] 0.6 [0.4 – 1.3] 0.002 1.7 [1.2 – 5.5] 0.002

AST (U/l) 0 21 [8 – 29] 13 [9 – 47] 0.537 16 [9 – 21] 0.310
24 69 [38 – 200] 410 [271 – 685] 0.004 827 [206 – 1237] 0.004
48 47 [33 – 147] 424 [157 – 860] 0.004 912 [729 – 2144] 0.004
72 37 [21 – 94] 259 [102 – 642] 0.002 692 [363 – 1976] 0.002

ALT (U/l) 0 23 [18 – 47] 28 [18 – 67] 0.589 23 [18 – 37] 0.937
24 33 [26 – 67] 87 [33 – 141] 0.030 90 [48 – 222] 0.017
48 32 [23 – 55] 84 [32 – 174] 0.017 153 [72 – 1321] 0.004
72 38 [17 – 48] 62 [28 – 108] 0.052 120 [71 – 207] 0.002

1Comparison to LT with P < 0.05 (Mann-Whitney U test) considered significant. Values expressed as median [range]. Abbreviations: ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; LT, laparotomy; PH, partial hepatectomy; TIPS, transjugular intrahepatic portosystemic shunt.
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were observed in the PH (115.2 [68.4 – 368.8], n = 6) and
PH/TIPS group (257.8 [190.7 – 579.0], n = 6) compared
to LT animals (54.8 [32.4 – 106.4], n = 6; P = 0.041 and P
= 0.002, respectively). Interestingly, the animal in the LT
group with mitotic hepatocytes (MI = 7) displayed a low
RTA level of 40.0, whereas the animal in the PH/TIPS
group without mitotic hepatocytes (MI = 0) showed an
increased RTA level of 211.1. Additionally, in the PH
group, the three animals without detectable mitotic hepa-
tocytes (MI = 0) expressed elevated RTA levels [68.4 –
147.0] in comparison to the median RTA of the LT group.
In summary, telomerase activity was generally increased
in treated animals (PH or PH/TIPS) in comparison to con-
trol animals (LT), but with much higher RTA values in ani-
mals with detectable mitotic hepatocytes.

To confirm telomerase activation in the resection groups,
we used the commercially available TeloTAGGG Telomer-
ase PCR ELISAPLUS as additional assay. This end-point
assay bears limitations in reliably measuring telomerase
activity in samples with high activity [25]. However, the
assay includes an internal PCR control to rule out false-
negative results and is thus suitable to further substantiate
our findings. All samples included in this study displayed
sufficient amplification of the internal PCR control, veri-

fying absence of interference by tissue inhibitors of
polymerase. In addition, telomerase activity levels,
expressed as total product generated (TPG) per μg total
protein in comparison to a standard with known amount
of telomeric repeats (Figure 3B), were higher in PH ani-
mals (20.2 [1.7 – 42.4], n = 6) and PH/TIPS animals (13.8
[5.6 – 50.0], n = 6) in comparison to LT animals (2.6 [0.1
– 9.0], n = 6).

Correlation of RTA levels to MI (Figure 4A) showed a sig-
nificant relationship (P = 0.003) and linear association
(Rs = 0.676) with higher RTA values in liver samples with
high mitotic activity. In contrary, we could not identify a
correlation between RTA levels and hepatitis scores (Fig-
ure 4B). Additionally, a subgroup analysis comparing ani-
mals with hepatitis score 2 (n = 6) to animals with
hepatitis score 1 (n = 6) did not reveal a significant differ-
ence in RTA levels (P = 0.589; Figure 4B). Even omitting
the two animals with hepatitis score 3, did not result in a
significant correlation between inflammatory infiltration
and RTA levels (P = 0.158, Rs = 0.380).

Discussion
To investigate the association between liver regeneration
with hepatocyte proliferation and telomerase activation,
we studied a large animal model with telomere biology
comparable to humans [20-22], and therefore, with
higher relevance to human telomere biology than the
commonly employed inbred mouse models. We per-
formed 70 to 80% liver resection with and without
hepatic decompression to induce compensatory hyperpla-
sia, characterized by proliferation of normally quiescent
hepatocytes [1,2]. Currently, there is no antibody availa-
ble to reliably detect telomerase in tissue sections [26].
Thus, we evaluated telomerase activity employing a fully
quantitative PCR-based assay. This method constitutes an
alternative and well accepted approach to investigate tel-
omerase expression in tissue samples. Based on observa-
tions in liver transplant recipients and patients with
massive liver resection, hepatic decompression was per-
formed by TIPS placement as additional procedure in a
separate experimental group to improve survival and to
further enhance liver regeneration [27,28]. This approach
was based on the hypothesis that abrogation of increased
portal pressure and shear stress following liver resection
would prevent continuous liver damage and promote
regeneration. Indeed, we observed higher mitotic indices
in PH/TIPS animals in comparison to PH alone. Corre-
spondingly, we also detected higher telomerase activity
levels following PH/TIPS.

In our study, telomerase activity generally increased in
treated animals (PH and PH/TIPS) relative to control ani-
mals (LT) with peak values in animals with high mitotic
activity. Mitotic hepatocytes as marker for compensatory

Histology three days after surgeryFigure 1
Histology three days after surgery. Histology of pig liv-
ers three days after surgery was assessed to grade liver 
regeneration and hepatitis. Shown are representative low-
power fields (original magnification 100×) in hematoxylin and 
eosin-stained sections of a control pig liver without surgery 
(A) and a pig liver three days after 70 to 80% hepatectomy 
(B). High-power fields (original magnification 400×) were 
used to count the number of mitotic hepatocytes (arrows) 
per ten visual fields. Representative microphotographs are 
shown for a pig liver three days after 70 to 80% hepatectomy 
(C) and a pig liver three days after 70 to 80% hepatectomy 
with hepatic decompression (D).
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hyperplasia were not detected in 4 out of 11 animals three
days after PH or PH/TIPS (histological assessment not
available for one PH animal). Counting mitotic hepato-
cytes is the most direct tissue-based marker for hepatocyte
proliferation, however, not sensitive enough to fully
quantitate proliferative activity in regenerating liver tissue.
Furthermore, mitosis constitutes a very short segment of
the cell cycle and thus mitotic figures might not be present
in some of the treated animals despite liver regeneration.
Other proliferation markers, including immunohisto-
chemical staining for cell cycle-associated nuclear anti-
gens or gene expression patterns, might prove to be more
reliable in future studies [29].

Our data demonstrating telomerase activation in regener-
ating pig liver tissue are consistent with previous findings
in patients with chronic hepatitis showing TERT expres-

sion and telomerase activation in regenerative nodules
[30,31]. Since high levels of telomerase activity have also
been detected in leucocytes, it has thus far remained an
area of considerable controversy whether increased levels
of telomerase activity in liver samples from patients with
hepatitis result from telomerase activation in hepatocytes
or from infiltrating leucocytes [32]. Based on our results,
we propose that telomerase activation in proliferating
hepatocytes is the main cause for increased telomerase
activity in regenerative liver nodules. This conclusion is
supported by the significant correlation of telomerase
activity to the number of mitotic hepatocytes in our study.
In contrast, no relationship was observed between telom-
erase activity and hepatitis scores. For example, animals
with control laparotomy displayed higher hepatitis scores
but lower telomerase activity in comparison to animals
with liver resection. Furthermore, a subgroup analysis
comparing animals with grade 1 to animals with grade 2
hepatitis did not reveal a significant difference in telomer-
ase activity.

The promoter of the human TERT gene, the catalytic and
rate limiting component of the telomerase complex, con-
tains transcriptional activation sites that are characteristic
of many growth-related genes [33,34]. As other groups

Telomerase activity three days after surgeryFigure 3
Telomerase activity three days after surgery. The 
graphs show median telomerase activity and 1st to 3rd quar-
tile range (error bars) in liver samples from pigs three days 
after control laparotomy (LT, n = 6) or partial hepatectomy 
(PH, n = 6) with and without transjugular intrahepatic porto-
systemic shunt (TIPS, n = 6). Telomerase activity was deter-
mined with the real-time quantitative telomeric repeat 
amplification protocol (RQ-TRAP) and expressed as relative 
telomerase activity per μg protein (RTA; A), and by the com-
mercially available TeloTAGGG Telomerase PCR ELISAPLUS 

measuring telomerase activity as total product generated per 
μg protein (TPG; B). Median RTA values were significantly 
higher in the PH and PH/TIPS group compared to the LT 
group (Mann-Whitney U test, P < 0.05 considered signifi-
cant).
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Mitotic indices and hepatitis scores three days after surgeryFigure 2
Mitotic indices and hepatitis scores three days after 
surgery. The dot plots depict distribution of mitotic indices 
(A) and hepatitis scores (B) determined in stained liver-sec-
tions of pigs on the 3rd postoperative day after control 
laparotomy (LT, n = 6) or partial hepatectomy (PH, n = 5) 
with and without transjugular intrahepatic portosystemic 
shunt (TIPS, n = 6). Each dot represents data for a single ani-
mal. Median values are marked by horizontal bars. Histologi-
cal assessment is not available for one PH animal.
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have reported, partial hepatectomy induces a rapid but
transient activation of mitogenic signal transduction path-
ways, in particular phosphoinositide 3-kinase and
mitogen-activated protein kinase/extracellular signal-reg-
ulated kinase [35]. Downstream targets of these pathways
include transcription factors that activate TERT, for exam-
ple c-Myc. Furthermore, as shown in primary mouse
hepatocytes in vitro [17], major growth factors driving
liver regeneration, namely hepatocyte growth factor and
epidermal growth factor, are associated with telomerase
activation. Pretreatment with these growth factors before
partial hepatectomy increased telomerase activation in
the remnant liver [17]. Together, these publications fur-
ther support our data and suggest a molecular link
between telomerase activation and growth factors as well
as signal transduction pathways driving liver regenera-
tion. Further investigations in animal models, such as
introduced in this study, have to be conducted to eluci-
date the molecular mechanism of TERT regulation in liver
regeneration. However, since the sequence of the porcine

TERT promoter has not been reported and therefore dif-
ferences in the molecular regulation of TERT between
human and porcine hepatocytes cannot be excluded,
results have to be confirmed in human liver samples and
primary human hepatocyte cultures.

In cell culture, expansion of proliferating human hepato-
cytes is limited by replication-associated telomere erosion
[12,36]. Observations in telomerase knockout mice with
short telomeres suggest that telomere dysfunction inhibits
liver cells with critically short telomeres from entering the
cell cycle [37]. Therefore, telomere dysfunction in prolif-
erating hepatocytes has been proposed as cellular mecha-
nism underlying impaired regeneration in chronic liver
injury [38]. In agreement with these studies and based on
our findings, we suggest that telomerase activation in pro-
liferating hepatocytes during liver regeneration represents,
in analogy to what has been observed in human B lym-
phocytes, a protective mechanism to prevent chromo-
somal instability and early replicative exhaustion.
Furthermore, in addition to telomere length maintenance,
telomerase stabilizes telomeric ends and improves cap-
ping function, which may lead to increased cellular resist-
ance against a wide variety of stressors and cytotoxic
agents. To this regard, it has been shown that embryonic
stem cells with high levels of telomerase activity accumu-
late lower concentrations of peroxides, implying greater
resistance against oxidative stress [10]. Although, the
mechanistic basis for some of these observations is not
completely understood, we speculate that telomerase acti-
vation in liver regeneration might function as survival-
promoting factor. Our study was not designed to investi-
gate the functional role of telomerase activation in liver
regeneration.

Recent studies suggest that permissiveness of hepatocytes
for telomerase activation might be impaired during
chronic hepatitis. A recent publication described absence
of telomerase activation following partial hepatectomy in
hepatitis B virus X gene transgenic mice [39]. In addition,
transforming growth factor beta (TGF-β), a profibrogenic
growth factor released during liver inflammation, rapidly
represses TERT transcription in normal and neoplastic
cells on a mechanism depending on the intracellular sig-
naling protein Smad3 [40]. Therefore, inhibition of tel-
omerase activation and/or accelerated telomere
shortening in patients with chronic hepatitis may limit
hepatocyte proliferation and survival with impairment of
regenerative capability. In future experimentation, the
model established in this study may be helpful to investi-
gate consequences of telomerase inhibition on telomere
dynamics in hepatocyte proliferation and liver regenera-
tion. Such studies should be conducted before telomerase
inhibitors are utilized in clinical studies to treat cancer
patients [41].

Correlation of mitotic indices and hepatitis scores to telom-erase activityFigure 4
Correlation of mitotic indices and hepatitis scores to 
telomerase activity. Mitotic indices (A; n = 17) and hepati-
tis scores (B; n = 17) were correlated to the relative telom-
erase activity per μg protein (RTA) in x-y plots by adding 
linear trendlines. Association was tested with the Spearman 
rank correlation (RS) considering P < 0.05 significant. Histo-
logical assessment is not available for one PH animal. In a 
subgroup analysis, RTA levels in animals with hepatitis score 
1 were compared to animals with hepatitis score 2 (Mann-
Whitney U test, P < 0.05 considered significant).
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Conclusion
Our data demonstrate telomerase activation in liver regen-
eration by compensatory hyperplasia in a large animal
model with telomere biology comparable to humans. A
significant correlation between telomerase activation and
the number of mitotic hepatocytes was observed, whereas,
no relationship was detected between telomerase activa-
tion and the degree of inflammatory infiltration. Telomer-
ase activation may constitute a mechanism to protect
proliferating liver cells against telomere shortening and
oxidative stress.

Methods
Animals and surgical procedures
All animals received humane care and experimentation
was approved by the local review board. PH with and
without TIPS or control LT were performed in 1 year old
Göttinger minipigs (Ellegaard, Dalmose, Danmark). Ani-
mals evaluated in each group as well as gender and weight
distribution are summarized in Table 1. All operations
were performed under general anesthesia. In brief, follow-
ing induction by an intramuscular injection of 5% keta-
min (0.5 ml per kg body weight) and 0.1 ml Stresnil
(Janssen-Cilag, Neuss, Germany) per kg body weight, an
indwelling catheter was placed into the right internal jug-
ular vein. Before endotracheal intubation, a propofol
bolus (30 to 50 mg) was given. Animals were ventilated
with a rate of 12 to 15 per minute and a volume of 400 to
500 ml. Anesthesia was maintained by continuous infu-
sion of propofol (15 mg per kg body weight per hour).
Animals received fentanyl (0.010 mg per kg body weight
per hour) for analgesia and repeated doses of pancuro-
niumbromid (0.1 ml per kg body weight) for muscular
relaxation. Oxygenation, heart rate, and blood pressure
were monitored. The abdomen was opened and the liver
mobilized. Approximately 70 to 80% of liver tissue was
removed by resection of the right medial, left lateral, and
left medial lobe using the clamp and finger fracture tech-
nique. Finally, blood vessels and bile duct for the remain-
ing left medial lobe were checked for integrity and the
abdomen was closed by multi-layer suture. In the PH/
TIPS group, a 43 mm long and 6 mm wide Easy Wallstent
(Boston Scientific, Natick, USA) was placed as TIPS via 9-
French guide catheter through the right internal jugular
vein under radiographic control. After extubation, intrave-
nous fluids were given and the animals were kept for 24
hours in individual boxes with continuous warming at
26°C. Metamizol and flunixin were used for pain control.
Three days after surgery, a second laparotomy was per-
formed. Liver tissue samples were obtained and snap-fro-
zen in liquid nitrogen and fixed in paraformaldehyde.
Animals were finally euthanized by intravenous injection
of 20 ml embutramid.

Clinical chemistry
Before laparotomy, 24, 48, and 72 hours postoperatively,
blood samples were obtained from each animal via ind-
welling jugular vein catheter. Without knowledge of the
experimental groups, serum levels of albumin, bilirubin,
ALT, AST, γ-glutamyl transferase, alkaline phosphatase,
cholinesterase, and blood coagulation were measured. All
clinical chemistry tests were performed using standard kits
and reagents.

Histological assessment
Fixed tissue samples were embedded in paraffin, sec-
tioned (5 μm), and stained with hematoxylin and eosin.
Liver histology was evaluated by a pathologist without
knowledge of the experimental groups. For each animal,
mitotic hepatocytes were counted in ten high-power fields
(total magnification 400×) and results were recorded as
MI (number of mitotic hepatocytes per ten high-power
fields). Inflammatory activity (hepatitis score) was graded
according to Desmet and colleagues [42] in low-power
magnifications (100×) from 0 (none) to 4 (strong).

Quantification of telomerase activity
Telomerase was extracted from each snap-frozen tissue
sample following standard protocols [8]. After protein
quantification with the BCA Compat-Able Protein Assay
Kit (Perbio Science, Bonn, Germany), diluted extracts
were used to measure telomerase activity using a fully
quantitative SYBR Green-based RQ-TRAP with 293T cells
as standards to calculate the RTA per μg of protein for each
sample [25]. Briefly, 20 ng of protein were incubated with
160 ng telomerase primer TS, 80 ng anchored return
primer ACX [43], and Universal SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, USA), in a final vol-
ume of 40 μl for 20 minutes at 25°C. Using the ABI Prism
7900 thermal cycler (Applied Biosystems), amplification
was performed in 40 PCR cycles (30 seconds 95°C and 60
seconds 60°C). As described before [25], semi-log ampli-
fication curves were then compared with amplification
plots generated from serial dilutions of telomerase-posi-
tive 293T cell extracts as standards (equivalent to 1000,
500, 100, 50, and 10 cells, respectively) and RNase-inacti-
vated samples as negative controls.

A commercially available telomerase activity assay, the
TeloTAGGG Telomerase PCR ELISAPLUS (Roche Diagnos-
tics, Mannheim, Germany), was used as additional
method to confirm telomerase activity. This end-point
assay utilizes an enzyme-linked immunosorbent assay for
quantification and an internal PCR control to detect false-
negative results due to tissue inhibitors of polymerase.
The test was performed with 1000 ng protein and an ini-
tial telomerase incubation time of 20 minutes. The results
were expressed as TPG per μg protein in comparison to a
control template of 0.1 amole telomeric repeats [36].
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Statistical analysis
Data are presented as median [range]. Because of the
small data set and ordinal hepatitis score, a two-tailed
Mann-Whitney U test was employed as non-parametric
test to determine significant differences between groups.
Association between two variables was tested with the
Spearman rank correlation test (RS). P < 0.05 was consid-
ered significant.

List of abbreviations
ALT – alanine aminotransferase; AST – aspartate ami-
notransferase; LT – laparotomy; MI – mitotic index; PH –
partial hepatectomy; RQ-TRAP – real-time quantitative
telomeric repeat amplification protocol; RTA – relative tel-
omerase activity; TIPS – transjugular intrahepatic porto-
systemic shunt; TPG – total product generated
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