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Abstract
Introduction: Heme oxygenase-1 (HO-1) is a stress response enzyme, which catalyses the
breakdown of heme into biliverdin-IX alpha, carbon monoxide and ferrous iron. Under situations
of oxidative stress, heat stress, ischemia/reperfusion injury or endotoxemia, HO-1 has been shown
to be induced and to elicit a protective effect. The mechanism of how this protective effect is
executed is unknown.

Results: HO-1 induction with cobalt protoporphorin (Co-PP) dose-dependently protected against
apoptotic cell death as well as neutrophil-mediated oncosis in the galactosamine/endotoxin (Gal/
ET) shock model. Induction of HO-1 with Co-PP dose-dependently protected against neutrophil-
mediated oncosis as indicated by attenuated ALT release and TNF-mediated apoptotic cell death
as indicated by reduced caspase-3 activation. HO-1 induction did not attenuate Gal/ET-induced
TNF-alpha formation. Furthermore, a similar protective effect with the high dose of Co-PP was
observed when animals were treated with Gal/TNF-alpha.

Conclusions: HO-1 induction attenuates apoptosis and neutrophil-mediated oncosis in the Gal/
ET shock model. However, the protective effect is not due to the reduction of TNF-alpha release
or the attenuation of neutrophil accumulation in the liver sinusoids.

Introduction
Heme oxygenase (HO) catalyzes the oxidative cleavage of
Fe-protoporphyrin-IX yielding equimolar amounts of
biliverdin-IX alpha, free divalent iron, and carbon monox-
ide (CO) [1]. Among the three isoenzymes cloned to date,
only heme oxygenase-1 (HO-1) can be induced by a vari-
ety of disparate stimuli, most of which are linked by their
ability to provoke oxidative stress [1]. Induction of HO-1

may protect the cell against oxidative injury by a) control-
ling intracellular levels of "free" heme (a prooxidant), b)
producing biliverdin (an antioxidant), c) improving
nutritive perfusion via CO release, and d) fostering the
synthesis of the Fe-binding protein ferritin [1]. In the liver,
HO-1 induction protected against ischemia/reperfusion
injury [2,3] and endotoxemia [4]. However, the mecha-
nism of protection is unclear. In particular, it is
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controversial whether HO-1 induction in the liver pro-
tects against apoptotic and/or oncotic cell death. To
address this question, we investigated the beneficial effect
of HO-1 induction in the galactosamine/endotoxin (Gal/
ET) shock model. Cell injury in this model involves TNF-
induced apoptosis [5] as well as a neutrophil-mediated
oncosis, which is caused mainly by reactive oxygen species
[6,7].

Methods
Male C3Heb/FeJ mice (Jackson Laboratories, Bar Harbor,
ME) were treated i.p. with 700 mg/kg D-galactosamine
(Sigma Chemical Co., St. Louis, MO) in combination
with 100 micrograms/kg Salmonella abortus equi endo-
toxin (Gal/ET) or 20 micrograms/kg murine TNF-alpha
(Gal/TNF). Some animals were pretreated with 5 or 15
mg/kg of cobalt-protoporphyrin (Alexis, San Diego, CA)
18 h before Gal/ET. The following parameters were meas-
ured as previously described: caspase-3 activity [5], cas-
pase-3 processing and HO-1 expression [8], plasma ALT
activities [5], plasma TNF-alpha [7], imunohistochemistry
[9], neutrophil staining and histological assessment of
necrosis [10].

Results and Discussion
Western blot and immunohistochemical analysis indi-
cated that cobalt protoporphyrin (Co-PP) dose-depend-
ently induced HO-1 expression in hepatocytes and
nonparenchymal cells, especially Kupffer cells. To investi-
gate if increased HO-1 expression affected apoptotic or
oncotic cell death, animals were treated with galactos-
amine/endotoxin (Gal/ET). It was previously shown that
Gal/ET treatment induces TNF-alpha formation, which
activates and recruits neutrophils into the liver vasculature
[6] and causes a caspase-dependent parenchymal cell
apoptosis [5]. In addition, the apoptotic cell death triggers
neutrophil extravasation with massive aggravation of the

apoptotic cell injury [5]. Gal/ET treatment caused a 10-
fold increase of caspase-3 activity (indicator of apoptosis)
together with substantial ALT release into the plasma
(indicator of oncosis) (Table 1). Overall cell death (necro-
sis) was estimated to be 42 ± 4%. Caspase-3 activity was
reduced by 40% (5 mg/kg CoPP) or 90% (15 mg/kg Co-
PP). On the other hand, ALT activities were reduced to val-
ues not different from baseline (Table 1). Neutrophil
accumulation in liver sinusoids and parenchyma (174 ±
10 neutrophils/50 high power fields) and adherence in
venules (30 ± 3 neutrophils/10 venules) were not affected
by Co-PP. Furthermore, plasma TNF-alpha levels (11.6 ±
1.2 ng/ml) were not reduced by Co-PP administration.
These data suggest that HO-1 induction reduced both
apoptotic and oncotic cell death but did not prevent pro-
duction of key inflammatory mediators or neutrophil
recruitment. At the low dose of Co-PP, the inhibition of
neutrophil-mediated oncosis was more effective com-
pared to attenuation of apoptosis.

To investigate if the beneficial effect was due to HO-1
induction, animals were additionally treated with the
HO-1 inhibitor tin-protoporphyrin (Sn-PP). Treatment
with Sn-PP alone did not affect liver injury after Gal/ET
(Table 1). However, the beneficial effect of Co-PP treat-
ment on Gal/ET-mediated apoptosis as well as neu-
trophil-induced oncosis was completely reversed by Sn-
PP (Table 1). These data suggest that the hepatoprotection
observed with Co-PP administration was mainly due to
HO-1 induction.

Although the TNF response after Gal/ET could not explain
the protective effect of Co-PP, the potential protection of
HO-1 induction against Gal/TNF-induced liver injury was
investigated. Gal/TNF caused massive caspase-3 activation
(Table 1), which was confirmed by evaluation of procas-
pase-3 processing (data not shown). In addition, the

Table 1: Hepatoprotection by Heme Oxygenase-1 Induction

Caspase 3 Activity (∆F/min/mg protein) Plasma ALT Activity (U/L)

Controls 48 ± 6 56 ± 9
G/ET 479 ± 23* 3700 ± 900*
G/ET + 5 CoPP 289 ± 28*,# 245 ± 120*,#

G/ET + 15 CoPP 51 ± 2# 51 ± 14#

G/ET + SnPP 486 ± 10* 2442 ± 333*
G/ET + 5 CoPP/SnPP 573 ± 94* 2486 ± 679*
G/TNF 554 ± 35* 1680 ± 210*
G/TNF + 5 CoPP 671 ± 97* 2420 ± 600*
G/TNF + 15 CoPP 305 ± 55*,# 126 ± 39#

Apoptosis (caspase-3) and oncosis (alanine aminotransferase, ALT) were measured 7 h after Gal/ET or Gal/TNF treatment. Animals were 
pretreated for 18 h with cobalt protoporphyrin (5 or 15 mg/kg CoPP) and 12 h with tin protoporphyrin (15 mg/kg SnPP). Data represent means ± 
SE of n = 5 animals per group. *P < 0.05 (compared to controls) #P < 0.05 (compared to Gal/ET or Gal/TNF).
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increase in plasma ALT activities indicates oncotic cell
injury. Overall, 40 ± 3% of all hepatocytes were necrotic at
7 h after Gal/TNF administration. The low dose of Co-PP
had no effect on any of the parameters measured. How-
ever, the high dose of Co-PP attenuated caspase-3 activi-
ties by 45% and plasma ALT activities by >90% (Table 1).
The total number of necrotic cells, which were mainly
from apoptotic cells, was reduced to 10 ± 2%. These data
suggest that the high dose of Co-PP partially reduced
apoptosis but completely eliminated oncotic necrosis. In
this model, hepatocellular apoptosis triggers neutrophil
extravasation and cytotoxicity [5]. Elimination of apop-
totic cell injury with a caspase inhibitor completely pre-
vented neutrophil-induced liver injury [5]. In two
different experiments, apoptosis was only partially pre-
vented but oncotic cell death was almost completely elim-
inated by Co-PP treatment. This indicates that HO-1
induction affected both forms of cell death.

Unexpectedly, the massive HO-1 induction with
increased formation of antioxidants in Kupffer cells did
not attenuate TNF formation. In contrast, high doses of
the antioxidant dimethyl sulfoxide eliminated TNF for-
mation [11] and glutathione peroxidase deficiency
enhanced TNF generation after Gal/ET [7]. In addition,
HO-1 induction was also effective after Gal/TNF adminis-
tration. Together, these data suggest that HO-1 induction
in hepatocytes was more critical for the protective effect
than the quantitatively higher increase of HO-1 levels in
non-parenchymal cells. Moreover, an effect on hepatocel-
lular antioxidant levels is unlikely the mechanism of pro-
tection. Recent data indicate that CO may be the more
relevant mediator of the anti-apoptotic and cytoprotective
effects of HO-1 induction [12,13].

Conclusions
Induction of HO-1 in non-parenchymal cells and in hepa-
tocytes with Co-PP dose-dependently protected against
TNF-mediated apoptotic cell death and subsequent neu-
trophil-induced injury to hepatocytes. The protection is
not due to inhibition of TNF-alpha formation or attenua-
tion of neutrophil activation. HO-1 induction increases
the resistance to both forms of cell death in hepatocytes.
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