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Abstract
Background: Circadian regulated physiological processes have been well documented in the
mammalian liver. Phospholipases are important mediators of both cytoplasmic and nuclear signaling
mechanisms in hepatocytes, and despite a potentially critical role for these enzymes in regulating
the temporal aspect of hepatic physiology, their involvement in the circadian liver clock has not
been the subject of much investigation. The phospholipase C β4 (PLCβ4) enzyme is of particular
interest as it has been linked to circadian clock function. In general, there is no knowledge of the
role of the PLCβ4 isozyme in mammalian hepatocytes as this is the first report of its expression in
the mammalian liver.

Results: We found that in the liver of mice housed on a light:dark cycle, PLCβ4 protein underwent
a significant circadian rhythm with a peak occurring during the early night. In constant darkness, the
protein rhythm was more robust and peaked around dusk. We also observed a significant
oscillation in plcβ4 gene expression in the livers of mice housed in both photoperiodic and constant
dark conditions. The cellular distribution of the protein in hepatocytes varied over the course of
the circadian day with PLCβ4 primarily cytoplasmic around dusk and nuclear at dawn.

Conclusion: Our results indicate that PLCβ4 gene and protein expression is regulated by a
circadian clock in the mouse liver and is not dependent on the external photoperiod. A light-
independent daily translocation of PLCβ4 implies that it may play a key role in nuclear signaling in
hepatocytes and serve as a daily temporal cue for physiological processes in the liver.

Background
The phospholipase C (PLC) enzyme family participates
extensively in intracellular signaling processes by catalyz-

ing the breakdown of phosphotidylinositol bis-phos-
phate to generate the second messengers, inositol
trisphosphate (IP3) and diacylglycerol (DAG) [1]. In turn,
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these signaling molecules regulate the release of intracel-
lular calcium stores and promote the activation of protein
kinase C [2]. In one PLC subfamily, the β class (β1, β2, β3,
β4), the enzyme is often activated by the binding of vari-
ous chemical substrates to their associated G-protein cou-
pled receptors [1]. While the tissue localization of these
various PLCβ isoforms can be quite extensive, there are
distinct differences between their distributions [1]. For
example, in liver membranes, the presence of all four
PLCβ isoforms has been examined, and only PLCβ1, 2
and 3 have shown to be present this tissue [3]. As far as we
are aware, there has been no study to date that has pro-
vided evidence for the expression of PLCβ4 in liver tissue
as total extracts have not been previously examined.

PLCβ enzymes can be associated with many different G-
protein coupled receptors, thus, it is not surprising that
they have been linked to numerous physiological proc-
esses in hepatocytes. Their role in cellular responses to
epidermal growth factor, angiotensin II, vasopressin or
bradykinin binding on various liver processes including
cell division, mitogenesis, nuclear permeability, and
hypertensive responses in the cell has been the topic of
much investigation [4-6]. In addition to their ability to
respond to incoming information at the cell membrane,
members of the PLCβ class, have also been implicated in
nuclear signaling [7-10]. The PLCβ1 isoform has been
most extensively studied in this context where it appears
to play a role in liver regeneration and proliferation [9,11-
18].

One emerging area of interest is the possible role of pho-
pholipase C in the mammalian circadian system. Circa-
dian rhythms are initiated by the suprachiasmatic nucleus
(SCN) in the hypothalamus of the mammalian brain
[19]. The SCN acts as the master pacemaker, generating
and maintaining 24-hour cycles of behavior and physiol-
ogy [19]. The PLCβ4 isoform is of particular relevance as
it has been localized to and connected with the function
of the SCN [20,21]. PLCβ4 knockout mice display an
aberrant circadian phenotype and the enzyme has been
implicated in various signaling pathways in SCN cells [22-
24]. Moreover, we have recently shown that the levels of
PLCβ4 protein in the SCN undergo a 24 hour rhythm in
abundance and propose that this oscillation serves to gate
incoming information to a particular time of the day [21].

In addition to the SCN, self-sustaining clocks are found in
many tissues throughout the body [25]. These peripheral
clocks are believed to regulate local oscillations in physi-
ology and behavior. In the liver, the circadian regulation
is quite complex [26-28]. The liver clock regulates oscilla-
tions in gene expression, particularly those that are critical
to metabolic processes [29,30]. Clock disruption appears
to contribute to metabolic syndrome [31-34] as well as

nonalcoholic fatty liver disease [35], indicating that the
timing of these processes is necessary for optimal liver
function. PLC activity can be loosely linked to many
rhythmic processes in the liver, but its exact involvement
with regards to their temporal regulation has not been
investigated.

We hypothesized, based on its potential link with the cir-
cadian system and its known role in signal transduction
that PLCβ4 may be involved in temporal signaling in the
liver. To investigate this, we first sought to establish
whether or not PLCβ4 is expressed in mouse liver tissue.
We then determined whether there is a temporal regula-
tion in its abundance and distribution. These data will
provide critical insight into the daily regulation of second
messenger systems that may underlie important circadian
variation in physiological processes of the liver such as
cell proliferation and metabolism.

Results
Diurnal and circadian variation in PLCβ4 protein
Expression of PLCβ4 protein in total liver extracts was
examined using Western blot analysis.

Quantification of protein in both LD and DD housed
mice revealed a rhythmic oscillation (Figure 1). Statistical
analysis showed a significant oscillation as a function of a
24-hr cycle in both lighting conditions. In LD, the levels
of PLCβ4 protein peaked during the night at ZT10-ZT18,
and were relatively low at ZT2 and 22 (Figure 1A) (ZT14,
ZT18 vs. ZT2, p < 0.05; ZT14 vs. ZT22, p = 0.05). We
detected a similar oscillation of PLCβ4 protein in the liv-
ers of mice housed in DD conditions (Figure 1B). Here,
the protein peaked around dusk, with low levels of expres-
sion in the early morning and late night (CT 10 vs. CT 2,
6, 22, p < 0.0001, 0.005, 0.0005, respectively; CT14, CT18
vs. CT2, CT22, p < 0.015). According to the cosinor anal-
ysis, the timing of the acrophase was similar in mice
housed in LD (ZT13 +/- 0.8) and DD (CT13 +/- 0.3).
However, the amplitude of the DD (0.4 +/- 0.04) oscilla-
tion was much twice as robust as what was observed in the
livers of the LD (0.2 +/- 0.03) mice.

Oscillation of plcβ4 mRNA expression
At the outset, we needed to confirm the presence of mRNA
expression in the liver. Our initial PCR analysis demon-
strates that plcβ4 is clearly expressed in mouse total liver
extracts. A single band, approximately 300 bp in length
was observed on the gel which was the expected length
based on primer selection (Figure 2A). Sequencing con-
firmed that the band corresponds to the appropriate
region of plcβ4 DNA. Identical results were obtained from
multiple reactions using both primer sets.
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In order to determine if an oscillation in plcβ4 gene
expression underlies the rhythm in protein expression, we
analyzed plcβ4 mRNA levels over the course of the day in
the livers of mice housed in either LD or DD conditions
using semi-quantitative PCR. In accordance with the pro-
tein data, the quantification of the plcβ4 gene expression
revealed a rhythmic oscillation in the liver of mice housed
in both LD and DD (Figure 2B–D). Statistical analysis
showed that the mRNA displayed significant rhythmic
oscillations as a function of a 24-hour cycle under both
lighting conditions. In both conditions, the mRNA
expression peaks around dusk and is low in the early
morning and late night hours. Specifically, the plcβ4
mRNA is highest at dusk (ZT11) and is low in the late
night (ZT11 vs. ZT23, p < 0.005) and early-mid day (ZT11
vs. ZT5, p < 0.005). In DD mice, plcβ4 mRNA is lowest
during the early morning (CT2, p < 0.04, as compared to
CT14) and late night (CT22, p < 0.02, as compared to
CT14). Cosinor analysis indicates the peaks to fall at ZT13
+/- 0.8 and CT15 +/- 1.1 hours, respectively.

Temporal translocation of PLCβ4 protein
Upon initial evaluation of PLCβ4 in mouse hepatocytes,
we found the protein to be distributed relatively homoge-
neously throughout the tissue (Figure 3). In some sec-
tions, the staining appears to be more intense around the
central vein, but this was not consistent. There was a
marked rhythm of intracellular PLCβ4 distribution across
the circadian day (Figure 3). The most obvious differences
were observed between the tissue taken during the late day
or early night (CT10-14) and that taken during the late
night (CT23). Between CT10-14, when the total levels of
PLCβ4 protein are increasing, the enzyme was primarily
restricted to the cytoplasm and the nuclei were essentially
devoid of PLCβ4-IR. However, during the late night,
PLCβ4 was found restricted to the hepatocyte nuclei with
very little IR in the cytoplasm. At the other time points
sampled, the protein appeared to be in transition and was
found to varying degrees in both the cytoplasm and the
nucleus. These observations were consistently found in all
liver tissues examined (3–6 per time point) and inde-
pendent of the particular lobe that was sampled. In the
control experiment where we pre-absorbed the antibody
with peptide, the tissue was essentially devoid of staining
(Figure 3).

Discussion
The present study is the first to demonstrate that PLCβ4 is
present in mouse liver total extracts. We found its mRNA
and protein expression to be temporally regulated as well
as its cellular distribution. The fact that the presence of the
PLCβ4 isoform has been previously overlooked in the
liver is not surprising based on its temporal expression.
The low levels of the protein during the daytime would
make it difficult to detect. Moreover, previous studies

Daily oscillation of PLCβ4 protein in the liver of mice housed in (A) a 12 hr light:12 hr dark photoperiod (Light:Dark) or in (B) constant darkness (Dark:Dark)Figure 1
Daily oscillation of PLCβ4 protein in the liver of mice 
housed in (A) a 12 hr light:12 hr dark photoperiod 
(Light:Dark) or in (B) constant darkness (Dark:Dark). 
Representative Western blots probed with anti-PLCβ4 anti-
body are shown. Each lane was loaded with 75 μg of total 
protein from a single mouse sacrificed at the specified time 
point denoted at the top of each lane. Blots were stripped 
and re-probed for mitogen activating peptide kinase (MAPK) 
to control for loading error. PLCβ4 relative optical density 
values were normalized to those of MAPK for each lane and 
then to the peak time-point for each blot. Normalized data 
represent mean ± SE of 3 mice at each time point. Cosinor-
fitted curves have been drawn. The black bars at the bottom 
of each graph represent the period of darkness.
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have restricted their analysis to membrane extracts [3],
which may not be the primary location of PLCβ4 action
based on the current findings.

In the present manuscript, we show that PLCβ4 protein
levels undergo a robust rhythm in the mouse liver peaking
during the night time hours. This temporal expression is
qualitatively similar to what we previously described in
the SCN [21]. A significant oscillation was observed in the
livers of mice housed on both an LD cycle as well as a DD
photoperiod indicating the rhythm is not being driven by
an external lighting cycle. In the SCN, the rhythm in
PLCβ4 was only observed in the LD mice [21]. This sug-
gests that the enzyme likely serves different functions in
these tissues and that the mechanism regulating its abun-
dance may not be the same. That does not mean to suggest
that a photic stimulus does not affect PLCβ4 protein. The
observation that the protein oscillation was more robust

in the absence of a light stimulus (DD), implicates light
may actually serve to dampen the PLCβ4 oscillation, per-
haps by affecting its stability since the mRNA oscillations
appear to be of similar amplitude. In addition to light,
other stimuli, most notably food availability, can serve to
synchronize oscillatory processes in the liver [36]. While
our data indicate photic signals do not underlie the cycli-
cal nature of PLCβ4 gene or protein expression, we cannot
rule out the possibility that a rhythm in food intake may
contribute to the rhythm.

Like many mammalian peripheral tissues, hepatocytes
house individual circadian clocks that serve to regulate the
timing of many of its functions. The peripheral clocks can
sustain 24-hr rhythms in vitro, but the "master clock" in
the SCN is required to synchronize the intra and inter
organ oscillations [37]. The exact mechanism by which
the SCN controls peripheral clock machinery is not

Expression of plcβ4 in mouse liver tissueFigure 2
Expression of plcβ4 in mouse liver tissue. (A) PCR results using plcb4 set A primers and template cDNA obtained from 
RT-PCR of mouse liver total RNA. Lane 1: 1 kB DNA Ladder Plus (Invitrogen). Lane 2: 50 μl PCR reaction indicating plcβ4 
product (326 bp). (B) Representative gels of plcβ4 gene and gapdh expression over the course of the day in mice housed in LD 
(left) and DD (right). Each lane represents data from an individual mouse sacrificed at the time of day indicated above each 
lane. Relative amounts of plcβ4 gene expression across the 24-hour day of mice housed in Light:Dark (C) or Dark:Dark (D). 
Normalized data represent mean ± SE of 3 mice at each time point. Cosinor-fitted curves have been drawn. The black bars at 
the bottom of each graph represent the period of darkness.
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Immunohistochemical staining for PLCβ4 in mouse hepatocytesFigure 3
Immunohistochemical staining for PLCβ4 in mouse hepatocytes. In constant darkness, PLCβ4 protein fluctuated in 
abundance and cellular distribution throughout the circadian day. Insets: Note the change in the presence of nuclear expression 
over the course of the day indicated by the arrows. PLCβ4 is found in the nucleus and the cytoplasm at CT 2 (A) and transi-
tions through CT 6 (B) to the solely cytoplasmic concentration that is noted at CT 10 (C) and 14 (D). PLCβ4 then moves back 
out of the cytoplasm in to the nucleus, with very high nuclear abundance prominent at CT 23 (E). Sections of liver tissue from 
a mouse sacrificed at CT18 incubated with rabbit anti-phospholipase C β4 primary antibody (Santa Cruz Biotechnology) (F) as 
compared to when the antibody is pre-absorbed with control peptide (Santa Cruz Biotechnology) prior to incubation with the 
tissue (G). Images are representative of 3–6 mice per time point. Scale bar = 30 μm.
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known. The signal is likely to be tissue specific and for the
liver, it appears to be a blood borne constituent [38]. His-
torically, PLC enzymes are known to link G-protein recep-
tors to intracellular signaling pathways by generating the
second messengers, DAG and IP3 [1]. In this capacity, one
role of the rhythmic expression of PLCβ4 in the liver may
be to limit the input of extracellular signals to particular
times of day as has been proposed to occur in the central
brain clock [21]. While it has not been investigated for
this specific isoenzyme, phospholipase C activity has been
shown to mediate the downstream effects of glucagons,
vasopressin, platelet activating peptide, pancreastatin and
phenylephrine in the liver [3,39-41] which may impinge
on various aspects of liver function. Limiting the time-of-
day in which these pathways can be activated by regulat-
ing the presence of PLCβ4 would allow the liver a means
by which to have temporal control of physiological func-
tions in response to various extracellular signals. One
example would be metabolism which is known to be a cir-
cadian regulated process [42-44].

The nuclear expression of PLCβ4 invokes analogies with
the PLCβ1 isoform, which has been previously localized
to hepatocyte nuclei [18,45]. While inositol phosphates
in the liver appear to be involved in the general regulation
of gene expression [46], the functional role of nuclear
PLCβ1 protein in the liver has been studied primarily in
the context of liver regeneration [14,47,48]. In light of the
present data, PLCβ enzymes may be part of a common
mechanism used to regulate cellular proliferation in the
liver. Although PLCβ4 isoform has not been localized pre-
viously in hepatocyte nuclei, it has been demonstrated in
the nuclei of NIH-3T3 cells where its function is not
known [49]. As far as we are aware, the circadian regulated
translocation has only been previously observed for pro-
teins known to be intimately involved in the circadian
clock [19,50,51]. In the liver, the differential cellular dis-
tribution pattern for the PER1 is similar to what we show
here for PLCβ4, with a nuclear expression occurring in the
late night and cytoplasmic expression in the late day
[51,52]. Once in the cytoplasm, clock proteins necessitate
dimerization prior to nuclear translocation [19]. This is
not likely to be the case for PLCβ4 as it contains a carboxy-
terminal nuclear translocation sequence [45]. However,
this raises the possibility that an additional role for PLCβ4
may be to partner with cytoplasmic proteins and shuttle
them into the nucleus during particular times of day.

Gene expression of various clock components is known to
be regulated by transcription factors CLOCK and BMAL1
whose expression, in turn, is regulated by REV-ERBα,
PPARα and RORα [53,54]. The mechanism by which
rhythm PLCβ4 levels are controlled is not known, but the
similar temporal profile initially suggested to us that it
may be analogous to that of known clock genes. In the

present study, we report a significant oscillation in the
mRNA levels of the enzyme in both LD and DD. However,
unlike the known clock genes, where the protein is typi-
cally phase delayed about 6 hours relative to mRNA
expression [55], PLCβ4 protein peaks with little phase
delay. These data indicate that an oscillation in mRNA,
underlies the rhythm we observed in protein levels, but
the regulation of plcβ4 gene and protein abundance is
likely to differ from known clock components, and may
perhaps be related to the role of PLCβ4 in signal transduc-
tion. In accordance with this, using a bioinformatics
approach, we have looked into the possibility that
CLOCK, BMAL and PPARα transcription factors similarly
regulate plcβ4 gene expression by binding to E-box and
PPRE promoter sequences. Thus far, we have not been
able to identify any relevant promoter sequences, how-
ever, additional studies will need to be undertaken to
effectively address this question. In addition to transcrip-
tional regulation, yet to be identified post-transcriptional
and post-translational mechanisms may also contribute
to the oscillation in PLCβ4 protein as has been shown for
other oscillating liver proteins [28]. The present observa-
tion that the amplitude of the mRNA oscillations is not
directly related to that of the protein level oscillations sup-
port this idea. Alternatively, the use of a semi-quantitative
PCR method, while sufficient to detect rhythm acrophase
and period, may not be precise enough to make predic-
tions regarding rhythm amplitude.

As noted here for PLCβ4, a daily oscillation in the abun-
dance and cellular distribution of the protein may serve as
a daily temporal cue in hepatocytes. Clearly, the fact that
the entry of PLCβ4 into the nucleus is temporally regu-
lated by an unknown signal adds another complexity to
understanding its function. The present report opens up
the possibility that PLCβ4 may contribute to temporal
regulation of many physiological processes in the liver
including a potential role in cellular proliferation which is
regulated by the clock component, BMAL [56], and only
been previously investigated for other PLCβ isoforms.

Conclusion
The present study shows that PLCβ4 is expressed in mouse
liver tissue where it undergoes a circadian oscillation. The
circadian clock regulates an oscillation in gene transcrip-
tion which underlies the protein cycling and may also reg-
ulate unidentified post-translational modifications of
PLCβ4. The intracellular localization of PLCβ4 is also
temporally regulated by a circadian clock. We conclude
that the oscillatory nature of PLCβ4 likely underlies tem-
poral signaling in hepatocytes.
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Methods
Animals
Male mice (6–8 wk old, C57B6/J, Harlan) were housed in
a 12 hr light:12 hr dark photoperiod (LD) (lights off at
zeitgeber time (ZT) 12) over the course of two weeks and
received food and water ad libitum. For mRNA and protein
analysis, mice housed in LD or DD were sacrificed at des-
ignated time points over the course of the day (n = 3 mice
per time point). For DD mice, the lights were turned off at
ZT12 and remained off for the remainder of the experi-
ment. Mice were sacrificed on the first full day of DD. Each
mouse was euthanized with CO2 and fresh liver tissue was
removed and immediately placed on dry ice for protein or
RNA extraction. Mice were then transcardially perfused
with 0.9% saline followed by 4% paraformaldehyde in
0.1 M phosphate buffer. The remaining perfused liver was
used for the immunohistochemical analysis. All proce-
dures were performed in accordance with methods
approved by the College of Charleston Institutional Ani-
mal Care and Use Committee.

Protein expression studies
Total protein from liver was extracted by homogenizing
tissue in extraction buffer (0.1 M sodium chloride, 0.01 M
Tris pH 7.6, 0.001 EDTA, protease inhibitor cocktail) fol-
lowed by centrifugation (9000 rpm, 10 min, 2×). Super-
natants were collected and quantified using BioRad Dc
protein assay. 75 μg of total protein from a single mouse
at each time point was separated by electrophoresis. Fol-
lowing overnight transfer onto a nitrocellulose mem-
brane, blots were placed in a blocking solution (5% non-
fat milk, 1% bovine serum albumin in phosphate buff-
ered saline (PBS)) for 60 minutes. Blots were washed in
PBS containing 0.3% Tween-20 (PBS-T) and probed with
rabbit anti-PLCβ4 primary antibody (1:200, 120 min,
25°C, Santa Cruz Biotechnology). Membranes were
washed in PBS-T and incubated in horse radish peroxi-
dase-conjugated goat anti-rabbit secondary antibody (1:1
K, 90 min, 25°C, Jackson Immunoresearch). PLCβ4-
immunofluorescent bands were visualized using Super-
Signal West Dura detection kit (Pierce) and digitally
imaged using a Kodak Imaging System. Membranes were
stripped using Restore Western Blot Stripping Buffer
(Pierce) and re-probed with anti-mitogen activated pep-
tide kinase (MAPK) (1:10 K, Sigma). The optical density
of each PLCβ4 band was quantified and was normalized
to the density of the corresponding MAPK band. This anti-
body detects un-activated MAPK, whose levels are con-
stant throughout the day and is often utilized as a non-
cycling loading control in circadian experiments [57]. For
each gel, values were normalized to daily peak levels.

mRNA expression
Fresh liver tissue was excised and homogenized with TRI-
zol reagent (1 ml/100 mg tissue). After centrifugation at

4°C (10 minutes, 12,000 RPM), the RNA-containing
supernatant was incubated at room temperature and chlo-
roform (0.2 ml/1 ml TRIzol) was added to induce phase
separation. RNA in the aqueous phase was precipitated
with 0.5 ml isopropyl alcohol. The RNA pellet was washed
with 75% ethanol (1 ml/1 ml TRIzol), briefly air dried
and re-suspended in nuclease free water. Total RNA was
stored at -80°C until used in RT-PCR reactions.

SuperScript First Strand Synthesis System for RT-PCR (Inv-
itrogen) was used to generate cDNA template according to
the manufacturer instructions. The initial reaction mix (10
μl) consisted of 3 μg of total RNA template, 1 μl dNTPmix,
and 1 μl Oligo(dT) and DEPC treated water. Subsequent
PCR reactions contained 45 μl of PCR SuperMix (Invitro-
gen), 1 μl of forward and reverse primer, and 3 μl template
cDNA. plcβ4 mRNA was isolated using two primer sets
that amplified overlapping regions of similar size. plcβ4
set A forward (GCAGGTTATATCAGGGCAGTTCC) and
reverse (TTGTTGGCAGTGATAATGGTTTGT) amplified a
326 bp segment (2246–2570 bp) and plcβ4 set B forward
(AAGACGCACGCGATTGAGTTTGTA) and reverse
(CCACGTATGTCCCGATCTTCTTAT) amplified a 355 bp
segment (1943–2297 bp). gapdh mRNA was amplified
using forward (GAGCGAGACCCCACTAACATCAAA) and
reverse (GAGGGGCCATCCACAGTCTTCT) primers that
selected for a 341 bp segment (279–619 bp). Primers were
designed using the DNA Star program (Laser Gene) and
NCBI published sequences (accession numbers:
NM_013829, NM_008084). PCR products were verified
by the capillary electrophoretic method of sequencing
(Beckman Coulter CEQ 8000).

Total liver RNA from mice sacrificed across the circadian
day was extracted for semi-quantitative PCR experiments
similar to those previously described [58]. RT-PCR was
performed on each sample followed by PCR with plcβ4 set
A, plcβ4 set B, or gapdh primers. To validate our semi-
quantitative method, we used different PCR cycles (data
not shown). Based on these results, the following PCR
protocol was used: PCR amplification for 35 cycles with
denaturation at 95°C for 30 s, annealing at 58.9°C for 1
min, and extension at 72°C for 3 min. The plcβ4 gene was
always amplified at the same time as the gapdh gene. PCR
products were loaded and run on a 1% agarose gel. The
relative optical density of plcβ4 and gapdh amplified prod-
ucts were quantified using a Kodak Imaging System. Back-
ground optical density values were subtracted and plcβ4
levels were normalized to gapdh levels at each time point
over the course of the day and then normalized to the
peak time of day for each gel.

Histological studies
Perfused livers were postfixed overnight in 4% parafor-
maldehyde and cryoprotected in 30% sucrose in 0.1 M
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PBS. Liver sections (12 μm) were cut using a cryostat and
mounted directly onto gelatin coated glass slides. The sec-
tions were rinsed in 0.01 M PBS before being incubated in
1.5% H2O2 in PBS (15 min). After further rinsing in PBS,
non-specific binding was blocked by incubating sections
in 3% normal goat serum with 0.3% Triton X-100 prior to
overnight incubation (4°C) in rabbit anti-PLCβ4 (1:200,
Santa Cruz Biotechnology). A pre-absorption control was
performed by incubating the antibody with 5× concentra-
tion of blocking peptide (Santa Cruz Biotechnology) at
4°C for 2 hours prior to incubation with the tissue. Fol-
lowing rinsing with PBS, sections were incubated in bioti-
nylated goat anti-rabbit secondary antibody (1:200, 90
min, 25°C), and then rinsed again. Sections were then
incubated in an avidin-biotin complex (1:100; 90 min,
25°C, Vectastain Elite, Vector Laboratories). After rinsing,
the antibody complex was visualized using Sigma Fast™
3,3'-diaminobenzidine tetrahydrochloride with metal
enhancer. Sections were rinsed again in PBS, dehydrated
and coverslipped. Immunoreactivity (IR) was observed
and documented using a light microscope attached to a
High Resolution FireWire Digital CCD Color Microscope
Camera (Q Imaging, Burnaby, BC, Canada) attached to a
PC.

Statistical analysis
Differences in between time points of mRNA and protein
expression was initially analyzed using a one-way ANOVA
and Fisher's LSD post-hoc analysis and followed up with
a previously described cosinor fitting [59] used to deter-
mine circadian rhythmicity. The following equation was
used for the cosinor analysis: M + k1*cos(2*pi*t/24) +
k2*sin(2*pi*t/24). Data were fitted using a 99% confi-
dence level. All data are shown as mean +/- SE (n = 3 mice
at each time point). All p-values reported in the text refer
to the post-hoc analysis.
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